DOI QR코드

DOI QR Code

Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors - A brief review

  • Theerthagiri, Jayaraman (Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology (Deemed to be University)) ;
  • Durai, Govindarajan (Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology (Deemed to be University)) ;
  • Karuppasamy, K. (Division of Electronics and Electrical Engineering, Dongguk University-Seoul) ;
  • Arunachalam, Prabhakarn (Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University) ;
  • Elakkiya, Venugopal (Tissue Engineering Laboratory, PSG Institute of Advanced Studies) ;
  • Kuppusami, Parasuraman (Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology (Deemed to be University)) ;
  • Maiyalagan, Thandavarayan (SRM Research Institute, Department of Chemistry, SRM University) ;
  • Kim, Hyun-Seok (Division of Electronics and Electrical Engineering, Dongguk University-Seoul)
  • 투고 : 2018.03.09
  • 심사 : 2018.06.28
  • 발행 : 2018.11.25

초록

Supercapacitors (SCs) has gained an impressive concentration by the researchers due to its advantages such as high energy and power densities, long cyclic life, rapid charge-discharge rates, low maintenance and desirable safety. Hence it has been widely utilized in energy storage and conversion devices. Among the different components of SC, electrodes play a vital role in the performances of SCs. In this review, we present the recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides based materials for SC electrodes. Finally, the electrochemical stability and designing approach for the future advancement of the electrode materials are also highlighted.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF), Ministry of Human Resource Development (MHRD)

참고문헌

  1. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4 (2005) 366. https://doi.org/10.1038/nmat1368
  2. P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845. https://doi.org/10.1038/nmat2297
  3. X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, Nanoscale 3 (2011) 839. https://doi.org/10.1039/c0nr00594k
  4. (a) K. Karuppasamy, D. Kim, Y.H. Kang, K. Prasanna, H.W. Rhee, J. Ind. Eng. Chem. 52 (2017) 224. https://doi.org/10.1016/j.jiec.2017.03.051
  5. (b) K. Karuppasamy, H.W. Rhee, P.A. Reddy, D. Gupta, L. Mitu, A.R. Polu, X.S. Shajan, J. Ind. Eng. Chem. 40 (2016) 168. https://doi.org/10.1016/j.jiec.2016.06.020
  6. (c) K. Karuppasamy, S. Thanikaikarasan, R. Antony, S. Balakumar, X.S. Shajan, Ionics 19 (2013) 747. https://doi.org/10.1007/s11581-012-0806-9
  7. (d) K. Karuppasamy, R. Antony, S. Alwin, S. Balakumar, X.S. Shajan, Mater. Sci. Forum 807 (2014) 41.
  8. S. Dong, X. Chen, X. Zhang, G. Cui, Coord. Chem. Rev. 257 (2013) 1946. https://doi.org/10.1016/j.ccr.2012.12.012
  9. J. Theerthagiri, K. Thiagarajan, B. Senthilkumar, Z. Khan, R.A. Senthil, P. Arunachalam, J. Madhavan, M. Ashokkumar, ChemistrySelect 2 (2017) 201. https://doi.org/10.1002/slct.201601628
  10. K. Thiagarajan, J. Theerthagiri, R. Senthil, J. Madhavan, J. Mater. Sci.: Mater. Electron. 28 (2017) 17354. https://doi.org/10.1007/s10854-017-7668-x
  11. K. Thiagarajan, J. Theerthagiri, R. Senthil, P. Arunachalam, J. Madhavan, M.A. Ghanem, J. Solid State Electrochem. (2017) 1.
  12. Y. Dall'Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun. 48 (2014) 118. https://doi.org/10.1016/j.elecom.2014.09.002
  13. J. Theerthagiri, R. Senthil, B. Senthilkumar, A.R. Polu, J. Madhavan, M. Ashokkumar, J. Solid State Chem. 252 (2017) 43. https://doi.org/10.1016/j.jssc.2017.04.041
  14. J. Theerthagiri, R. Sudha, K. Premnath, P. Arunachalam, J. Madhavan, A.M. Al-Mayouf, Int. J. Hydrogen Energy 42 (2017) 13020. https://doi.org/10.1016/j.ijhydene.2017.04.042
  15. X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Nano Lett.12 (2012) 5376. https://doi.org/10.1021/nl302761z
  16. S. Liu, K.V. Sankar, A. Kundu, M. Ma, J.-Y. Kwon, S.C. Jun, ACS Appl. Mater. Interfaces 9 (2017) 21829. https://doi.org/10.1021/acsami.7b05384
  17. M.-S. Balogun, Y. Zeng, W. Qiu, Y. Luo, A. Onasanya, T.K. Olaniyi, Y. Tong, J. Mater. Chem. A 4 (2016) 9844. https://doi.org/10.1039/C6TA02492K
  18. X. Ji, K. Xu, C. Chen, B. Zhang, H. Wan, Y. Ruan, L. Miao, J. Jiang, J. Mater. Chem. A 3 (2015) 9909. https://doi.org/10.1039/C5TA01003A
  19. S. Vadivel, A. Naveen, J. Theerthagiri, J. Madhavan, T.S. Priya, N. Balasubramanian, Ceram. Int. 42 (2016) 14196. https://doi.org/10.1016/j.ceramint.2016.05.080
  20. B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, J. Mater. Chem. A 3 (2015) 21553. https://doi.org/10.1039/C5TA04737D
  21. C. Chen, D. Zhao, X. Wang, Mater. Chem. Phys. 97 (2006) 156. https://doi.org/10.1016/j.matchemphys.2005.08.001
  22. A. Guerrero-Ruiz, Q. Xin, Y. Zhang, A. Maroto-Valiente, I. Rodriguez-Ramos, Langmuir 15 (1999) 4927. https://doi.org/10.1021/la9816095
  23. K.H. Lee, Y.W. Lee, A.R. Ko, G. Cao, K.W. Park, J. Am. Ceram. Soc. 96 (2013) 37. https://doi.org/10.1111/jace.12096
  24. T. Palaniselvam, R. Kannan, S. Kurungot, Chem. Commun. 47 (2011) 2910. https://doi.org/10.1039/c0cc04605a
  25. L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu, S.-H. Yu, ACS Nano 6 (2012) 7092. https://doi.org/10.1021/nn302147s
  26. R. Lucio-Porto, S. Bouhtiyya, J.-F. Pierson, A. Morel, F. Capon, P. Boulet, T. Brousse, Electrochim. Acta 141 (2014) 203. https://doi.org/10.1016/j.electacta.2014.07.056
  27. E. Eustache, R. Frappier, R.L. Porto, S. Bouhtiyya, J.-F. Pierson, T. Brousse, Electrochem. Commun. 28 (2013) 104. https://doi.org/10.1016/j.elecom.2012.12.015
  28. D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18 (2006) 1178. https://doi.org/10.1002/adma.200502471
  29. S.I.U. Shah, A.L. Hector, J.R. Owen, J. Power Sources 266 (2014) 456. https://doi.org/10.1016/j.jpowsour.2014.05.045
  30. T.C. Liu, W. Pell, B. Conway, S. Roberson, J. Electrochem. Soc. 145 (1998) 1882. https://doi.org/10.1149/1.1838571
  31. O. Banakh, P. Schmid, R. Sanjines, F. Levy, Surf. Coat. Technol. 163 (2003) 57.
  32. S. Bouhtiyya, R.L. Porto, B. Laïk, P. Boulet, F. Capon, J. Pereira-Ramos, T. Brousse, J. Pierson, Scr. Mater. 68 (2013) 659. https://doi.org/10.1016/j.scriptamat.2013.01.030
  33. A. Achour, R.L. Porto, M.-A. Soussou, M. Islam, M. Boujtita, K.A. Aissa, L. Le Brizoual, A. Djouadi, T. Brousse, J. Power Sources 300 (2015) 525. https://doi.org/10.1016/j.jpowsour.2015.09.012
  34. E. Kao, C. Yang, R. Warren, A. Kozinda, L. Lin, Sensor Actuat. A: Phys. 240 (2016) 160. https://doi.org/10.1016/j.sna.2016.01.044
  35. D. Shu, C. Lv, F. Cheng, C. He, K. Yang, J. Nan, L. Long, Int. J. Electrochem. Sci. 8 (2013) 1209.
  36. D. Choi, P.N. Kumta, Electrochem. Solid State Lett. 8 (2005) A418. https://doi.org/10.1149/1.1951201
  37. X. Zhou, H. Chen, D. Shu, C. He, J. Nan, J. Phys. Chem. Solids 70 (2009) 495. https://doi.org/10.1016/j.jpcs.2008.12.004
  38. A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Chem. Mater. 22 (2009) 914.
  39. X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong, Y. Li, Nano Lett.13 (2013) 2628. https://doi.org/10.1021/nl400760a
  40. P.J. Hanumantha, M.K. Datta, K.S. Kadakia, D.H. Hong, S.J. Chung, M.C. Tam, J.A. Poston, A. Manivannan, P.N. Kumta, J. Electrochem. Soc. 160 (2013) A2195. https://doi.org/10.1149/2.081311jes
  41. A. Morel, Y. Borjon-Piron, R.L. Porto, T. Brousse, D. Belanger, J. Electrochem. Soc. 163 (2016) A1077. https://doi.org/10.1149/2.1221606jes
  42. Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, J. Wu, X. Niu, F. Ran, Nano-Micro Lett. 9 (2017) 6. https://doi.org/10.1007/s40820-016-0105-5
  43. X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, P. Han, L. Li, J. Yao, Z. Liu, H. Xu, ACS Appl. Mater. Interfaces 3 (2011) 3058. https://doi.org/10.1021/am200564b
  44. C.M. Ghimbeu, E. Raymundo-Pinero, P. Fioux, F. Beguin, C. Vix-Guterl, J. Mater. Chem. 21 (2011) 13268. https://doi.org/10.1039/c1jm11014d
  45. Y. Liu, L. Liu, L. Kong, L. Kang, F. Ran, Electrochim. Acta 211 (2016) 469. https://doi.org/10.1016/j.electacta.2016.06.058
  46. A. Achour, R. Lucio-Porto, M. Chaker, A. Arman, A. Ahmadpourian, M. Soussou, M. Boujtita, L. Le Brizoual, M. Djouadi, T. Brousse, Electrochem. Commun. 77 (2017) 40. https://doi.org/10.1016/j.elecom.2017.02.011
  47. Y. Wang, M. Jiang, Y. Yang, F. Ran, Electrochim. Acta 222 (2016) 1914. https://doi.org/10.1016/j.electacta.2016.12.003
  48. L. Stober, J. Konrath, S. Krivec, F. Patocka, S. Schwarz, A. Bittner, M. Schneider, U. Schmid, J. Micromech. Microeng. 25 (2015) 074001. https://doi.org/10.1088/0960-1317/25/7/074001
  49. I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J.L. Jauberteau, P. Carles, T. Merle-Mejean, Coatings 5 (2015) 656. https://doi.org/10.3390/coatings5040656
  50. D. Finello, New Developments in Ultracapacitor Technology, Wright Laboratory, Eglin Air Force Base, Florida, 1995.
  51. S. Roberson, D. Finello, R. Davis, J. Appl. Electrochem. 29 (1999) 75. https://doi.org/10.1023/A:1003460529736
  52. X.-L. Li, X. Yan, W. Hua, H.-L. Wang, W.-D. Wang, X.-Y. Chen, Trans. Nonferrous Met. Soc. China 19 (2009) 620. https://doi.org/10.1016/S1003-6326(08)60323-4
  53. P. Pande, P.G. Rasmussen, L.T. Thompson, J. Power Sources 207 (2012) 212. https://doi.org/10.1016/j.jpowsour.2012.01.028
  54. W.-B. Zhang, X.-J. Ma, L.-B. Kong, M.-C. Liu, Y.-C. Luo, L. Kang, J. Electrochem. Soc. 163 (2016) A1300. https://doi.org/10.1149/2.0911607jes
  55. J. Liu, K. Huang, H. Tang, M. Lei, Int. J. Hydrogen Energy 41 (2016) 996. https://doi.org/10.1016/j.ijhydene.2015.11.086
  56. L. Chen, C. Liu, Z. Zhang, Electrochim. Acta 245 (2017) 237. https://doi.org/10.1016/j.electacta.2017.05.102
  57. C. Chen, D. Zhao, D. Xu, X. Wang, Mater. Chem. Phys. 95 (2006) 84. https://doi.org/10.1016/j.matchemphys.2005.06.004
  58. S. Dong, X. Chen, L. Gu, X. Zhou, H. Xu, H. Wang, Z. Liu, P. Han, J. Yao, L. Wang, ACS Appl. Mater. Interfaces 3 (2010) 93.
  59. D. Choi, P.N. Kumta, J. Electrochem. Soc. 153 (2006) A2298. https://doi.org/10.1149/1.2359692
  60. L. Jiang, L. Gao, J. Am. Ceram. Soc. 89 (2006) 156. https://doi.org/10.1111/j.1551-2916.2005.00687.x
  61. D. Sun, J. Lang, X. Yan, L. Hu, Q. Xue, J. Solid State Chem. 184 (2011) 1333. https://doi.org/10.1016/j.jssc.2011.03.053
  62. S. Dong, X. Chen, L. Gu, X. Zhou, H. Wang, Z. Liu, P. Han, J. Yao, L. Wang, G. Cui, Mater. Res. Bull. 46 (2011) 835. https://doi.org/10.1016/j.materresbull.2011.02.028
  63. A. Achour, J. Ducros, R. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M. Djouadi, T. Brousse, Nano Energy 7 (2014) 104. https://doi.org/10.1016/j.nanoen.2014.04.008
  64. P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang, X. Wang, P. Sun, B.K. Tay, Z.X. Shen, W. Mai, Adv. Sci. 3 (2016).
  65. P. Lu, P. Ohlckers, L. Muller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila, X. Chen, Electrochem. Commun. 70 (2016) 51. https://doi.org/10.1016/j.elecom.2016.07.002
  66. Y. Xie, D. Wang, J. Alloys Compd. 665 (2016) 323. https://doi.org/10.1016/j.jallcom.2016.01.089
  67. Y. Haldorai, D. Arreaga-Salas, C.S. Rak, Y.S. Huh, Y.-K. Han, W. Voit, Electrochim. Acta 220 (2016) 465. https://doi.org/10.1016/j.electacta.2016.10.130
  68. S. Tang, Q. Cheng, J. Zhao, J. Liang, C. Liu, Q. Lan, Y.-C. Cao, J. Liu, Results Phys. 7 (2017) 1198. https://doi.org/10.1016/j.rinp.2017.03.006
  69. C. Xia, Y. Xie, W. Wang, H. Du, Synth. Met. 192 (2014) 93. https://doi.org/10.1016/j.synthmet.2014.03.018
  70. Y. Liu, R. Xiao, Y. Qiu, Y. Fang, P. Zhang, Electrochim. Acta 213 (2016) 393. https://doi.org/10.1016/j.electacta.2016.06.166
  71. B.M. Gray, A.L. Hector, M. Jura, J.R. Owen, J. Whittam, J. Mater. Chem. A 5 (2017) 4550. https://doi.org/10.1039/C6TA08308K
  72. M. Liu, T. Yang, J. Chen, L. Su, K.-C. Chou, X. Hou, J. Alloys Compd. 692 (2017) 605. https://doi.org/10.1016/j.jallcom.2016.09.110
  73. Y. Xie, F. Tian, Mater. Sci. Eng. B 215 (2017) 64. https://doi.org/10.1016/j.mseb.2016.11.005
  74. H.N. Shah, V. Chawla, R. Jayaganthan, D. Kaur, Bull. Mater. Sci. 33 (2010) 103. https://doi.org/10.1007/s12034-010-0014-z
  75. B. Das, M. Behm, G. Lindbergh, M. Reddy, B. Chowdari, Adv. Powder Technol. 26 (2015) 783. https://doi.org/10.1016/j.apt.2015.02.001
  76. B. Wei, H. Liang, D. Zhang, Z. Wu, Z. Qi, Z. Wang, J. Mater. Chem. A 5 (2017) 2844. https://doi.org/10.1039/C6TA09985H
  77. H. Cui, G. Zhu, X. Liu, F. Liu, Y. Xie, C. Yang, T. Lin, H. Gu, F. Huang, Adv. Sci. 2 (2015).
  78. D. Choi, P.N. Kumta, J. Am. Ceram. Soc. 94 (2011) 2371. https://doi.org/10.1111/j.1551-2916.2011.04412.x
  79. X.J. Ma, W.B. Zhang, ChemistrySelect 2 (2017) 8726. https://doi.org/10.1002/slct.201702007
  80. G. He, M. Ling, X. Han, D.I.A. El Amaiem, Y. Shao, Y. Li, W. Li, S. Ji, B. Li, Y. Lu, Energy Storage Mater. 9 (2017) 119. https://doi.org/10.1016/j.ensm.2017.07.005
  81. Y. Yu, W. Gao, Z. Shen, Q. Zheng, H. Wu, X. Wang, W. Song, K. Ding, J. Mater. Chem. A 3 (2015) 16633. https://doi.org/10.1039/C5TA03830H
  82. H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, William Andrew, 1996.
  83. S.T. Oyama, Introduction to the Chemistry of Transition Metal Carbides and Nitrides, Springer, 1996 p. 1.
  84. D.W. Flaherty, R.A. May, S.P. Berglund, K.J. Stevenson, C.B. Mullins, Chem. Mater. 22 (2009) 319.
  85. R. Levy, M. Boudart, Science 181 (1973) 547. https://doi.org/10.1126/science.181.4099.547
  86. S. Oyama, Catal. Today 15 (1992) 179. https://doi.org/10.1016/0920-5861(92)80175-M
  87. L. Toth, Transition Metal Carbides and Nitrides, Elsevier, 2014.
  88. H.J. Goldschmidt, Carbides, Springer, 1967 p. 88.
  89. V.A. Gubanov, A.L. Ivanovsky, V.P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides, Cambridge University Press, 2005.
  90. R. Freer, The Physics and Chemistry of Carbides, Nitrides and Borides, Springer Science & Business Media, 2012.
  91. W. Zheng, T.P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K. Schlichte, W. Zhang, D. S. Su, F. Schuth, R. Schlogl, J. Am. Chem. Soc. 135 (2013) 3458. https://doi.org/10.1021/ja309734u
  92. R. Ganesan, J.S. Lee, Angew. Chem. Int. Ed. 44 (2005) 6557. https://doi.org/10.1002/anie.200501272
  93. P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher, X. Wang, Adv. Funct. Mater. 25 (2015) 1520. https://doi.org/10.1002/adfm.201403633
  94. Y. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016) 1529. https://doi.org/10.1039/C5CS00434A
  95. V. Pralong, D. Souza, K. Leung, L. Nazar, Electrochem. Commun. 4 (2002) 516. https://doi.org/10.1016/S1388-2481(02)00363-6
  96. S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Chem. Rev. 113 (2013) 7981. https://doi.org/10.1021/cr400020d
  97. J.F. Callejas, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Chem. Mater. 28 (2016) 6017. https://doi.org/10.1021/acs.chemmater.6b02148
  98. S.L. Brock, K. Senevirathne, J. Solid State Chem. 181 (2008) 1552. https://doi.org/10.1016/j.jssc.2008.03.012
  99. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6 (2012) 1322. https://doi.org/10.1021/nn204153h
  100. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992. https://doi.org/10.1002/adma.201304138
  101. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 982. https://doi.org/10.1002/adma.201470041
  102. M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Dalton Trans. 44 (2015) 9353. https://doi.org/10.1039/C5DT01247C
  103. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341 (2013) 1502. https://doi.org/10.1126/science.1241488
  104. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248. https://doi.org/10.1002/adma.201102306
  105. Y. Dall'Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Phys. Chem Lett. 6 (2015) 2305. https://doi.org/10.1021/acs.jpclett.5b00868
  106. F. Sherif, W. Vreugdenhil, The Chemistry of Transition Metal Carbides and Nitrides, S. T. Oyama (ed.), Blackie Academic & Professional, Glasgow, (1996) 414
  107. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Adv. Sci. 3 (2016).
  108. E.M. Fryt, Solid State Ionics 101 (1997) 437.
  109. C. Osarinmwian, E. Roberts, I. Mellor, Chem. Phys. Lett. 621 (2015) 184. https://doi.org/10.1016/j.cplett.2015.01.004
  110. S.T. Oyama, J.C. Schlatter, J.E. Metcalfe III, J.M. Lambert Jr., Ind. Eng. Chem. Res. 27 (1988) 1639. https://doi.org/10.1021/ie00081a013
  111. M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78. https://doi.org/10.1038/nature13970
  112. Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Proc. Natl. Acad. Sci. 111 (2014) 16676. https://doi.org/10.1073/pnas.1414215111
  113. A.K. Das, S. Sahoo, P. Arunachalam, S. Zhang, J.-J. Shim, RSC Adv. 6 (2016) 107057. https://doi.org/10.1039/C6RA23665K
  114. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498. https://doi.org/10.1021/nl802558y
  115. C.-H. Park, F. Giustino, C.D. Spataru, M.L. Cohen, S.G. Louie, Nano Lett. 9 (2009) 4234. https://doi.org/10.1021/nl902448v
  116. R. Senthil, A. Selvi, P. Arunachalam, L. Amudha, J. Madhavan, A.M. Al-Mayouf, J. Mater. Sci.: Mater. Electron. 28 (2017) 10081. https://doi.org/10.1007/s10854-017-6769-x
  117. H. Chang, H. Wu, Energy Environ. Sci. 6 (2013) 3483. https://doi.org/10.1039/c3ee42518e
  118. S. Ramesh, K. Karuppasamy, S. Msolli, H.-S. Kim, H.S. Kim, J.-H. Kim, New J. Chem. 41 (2017) 15517. https://doi.org/10.1039/C7NJ03730A
  119. C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, ACS Appl. Mater. Interfaces 8 (2016) 15661. https://doi.org/10.1021/acsami.6b04767
  120. M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 28 (2016) 1517. https://doi.org/10.1002/adma.201504705
  121. F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W.D. Lou, Angew. Chem. Int. Ed. 54 (2015) 15395. https://doi.org/10.1002/anie.201508715
  122. Y. Xiao, L. Zheng, M. Cao, Nano Energy 12 (2015) 152. https://doi.org/10.1016/j.nanoen.2014.12.015
  123. J.-S. Li, Y. Wang, C.-H. Liu, S.-L. Li, Y.-G. Wang, L.-Z. Dong, Z.-H. Dai, Y.-F. Li, Y.-Q. Lan, Nat. Commun. 7 (2016).
  124. M. Chen, J. Zhang, Q. Chen, M. Qi, X. Xia, Mater. Res. Bull. 73 (2016) 459. https://doi.org/10.1016/j.materresbull.2015.09.030
  125. B. Wang, G. Wang, H. Wang, J. Mater. Chem. A 3 (2015) 17403. https://doi.org/10.1039/C5TA03929K
  126. T. Morishita, Y. Soneda, H. Hatori, M. Inagaki, Electrochim. Acta 52 (2007) 2478. https://doi.org/10.1016/j.electacta.2006.08.056
  127. H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 10886. https://doi.org/10.1021/acsami.5b02024
  128. C.-H. Chang, B. Hsia, J.P. Alper, S. Wang, L.E. Luna, C. Carraro, S.-Y. Lu, R. Maboudian, ACS Appl. Mater. Interfaces 7 (2015) 26658. https://doi.org/10.1021/acsami.5b08423
  129. M. Kim, J. Kim, Phys. Chem. Chem. Phys. 16 (2014) 11323. https://doi.org/10.1039/c4cp01141d
  130. M. Sarno, S. Galvagno, R. Piscitelli, S. Portofino, P. Ciambelli, Ind. Eng. Chem. Res. 55 (2016) 6025. https://doi.org/10.1021/acs.iecr.6b00737
  131. J.P. Alper, M.S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, J. Power Sources 230 (2013) 298. https://doi.org/10.1016/j.jpowsour.2012.12.085
  132. A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, R. Chandra, Ind. Eng. Chem. Res. 55 (2016) 9452. https://doi.org/10.1021/acs.iecr.6b02243
  133. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797. https://doi.org/10.1039/C1CS15060J
  134. Y. Xie, Y. Dall'Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R. Kent, ACS Nano 8 (2014) 9606. https://doi.org/10.1021/nn503921j
  135. M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, J. Am. Chem. Soc. 135 (2013) 15966. https://doi.org/10.1021/ja405735d
  136. T. Thomberg, A. Jänes, E. Lust, J. Electroanal. Chem. 630 (2009) 55. https://doi.org/10.1016/j.jelechem.2009.02.015
  137. S.T. Oyama, P. Clark, X. Wang, T. Shido, Y. Iwasawa, S. Hayashi, J. Ramallo-Lopez, F. Requejo, J. Phys. Chem. B 106 (2002) 1913. https://doi.org/10.1021/jp0136056
  138. X. Wang, H.-M. Kim, Y. Xiao, Y.-K. Sun, J. Mater. Chem. A 4 (2016) 14915. https://doi.org/10.1039/C6TA06705K
  139. Y. Lu, J.-k. Liu, X.-y. Liu, S. Huang, T.-q. Wang, X.-l. Wang, C.-d. Gu, J.-p. Tu, S.X. Mao, CrystEngComm 15 (2013) 7071. https://doi.org/10.1039/c3ce41214h
  140. S. Faraji, F.N. Ani, J. Power Sources 263 (2014) 338. https://doi.org/10.1016/j.jpowsour.2014.03.144
  141. H. Ma, J. He, D.-B. Xiong, J. Wu, Q. Li, V. Dravid, Y. Zhao, ACS Appl. Mater. Interfaces 8 (2016) 1992. https://doi.org/10.1021/acsami.5b10280
  142. N.P. Sweeny, C.S. Rohrer, O. Brown, J. Am. Chem. Soc. 80 (1958) 799. https://doi.org/10.1021/ja01537a012
  143. D. Wang, L.-B. Kong, M.-C. Liu, W.-B. Zhang, Y.-C. Luo, L. Kang, J. Power Sources 274 (2015) 1107. https://doi.org/10.1016/j.jpowsour.2014.10.179
  144. D. Wang, L.B. Kong, M.C. Liu, Y.C. Luo, L. Kang, Chem. Eur. J. 21 (2015) 17897. https://doi.org/10.1002/chem.201502269
  145. C. An, Y. Wang, Y. Wang, G. Liu, L. Li, F. Qiu, Y. Xu, L. Jiao, H. Yuan, RSC Adv. 3 (2013) 4628. https://doi.org/10.1039/c3ra00079f
  146. W. Du, R. Kang, P. Geng, X. Xiong, D. Li, Q. Tian, H. Pang, Mater. Chem. Phys.165 (2015) 207. https://doi.org/10.1016/j.matchemphys.2015.09.020
  147. C. An, Y. Wang, L. Li, F. Qiu, Y. Xu, C. Xu, Y. Huang, L.J.H. Yuan, Electrochim. Acta 133 (2014) 180. https://doi.org/10.1016/j.electacta.2014.04.056
  148. S. Duan, R. Wang, NPG Asia Mater. 6 (2014)e122. https://doi.org/10.1038/am.2014.65
  149. K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li, S. Chen, Adv. Funct. Mater. 25 (2015) 7530. https://doi.org/10.1002/adfm.201503662
  150. S. Wang, Z. Huang, R. Li, X. Zheng, F. Lu, T. He, Electrochim. Acta 204 (2016) 160. https://doi.org/10.1016/j.electacta.2016.04.051
  151. Y.-M. Hu, M.-C. Liu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, W. Han, J.-J. Li, L. Kang, Electrochim. Acta 190 (2016) 1041. https://doi.org/10.1016/j.electacta.2015.12.141
  152. Z. Zhang, S. Liu, J. Xiao, S. Wang, J. Mater. Chem. A 4 (2016) 9691. https://doi.org/10.1039/C6TA03732A
  153. Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, J. Am. Chem. Soc. 134 (2012) 15849. https://doi.org/10.1021/ja305623m
  154. P. Arunachalam, M.N. Shaddad, A.S. Alamoudi, M.A. Ghanem, A.M. Al-Mayouf, Catalysts 7 (2017) 119. https://doi.org/10.3390/catal7040119
  155. M.A. Ghanem, A.M. Al-Mayouf, P. Arunachalam, T. Abiti, Electrochim. Acta 207 (2016) 177. https://doi.org/10.1016/j.electacta.2016.04.172
  156. Y. Yang, X. Fan, G. Casillas, Z. Peng, G. Ruan, G. Wang, M.J. Yacaman, J.M. Tour, ACS Nano 8 (2014) 3939. https://doi.org/10.1021/nn500865d
  157. X. Chen, M. Cheng, D. Chen, R. Wang, ACS Appl. Mater. Interfaces 8 (2016) 3892. https://doi.org/10.1021/acsami.5b10785
  158. Y.-M. Hu, M.-C. Liu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, L. Kang, Electrochim. Acta 215 (2016) 114. https://doi.org/10.1016/j.electacta.2016.08.074
  159. Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, J. Mater. Chem. A 3 (2015) 43. https://doi.org/10.1039/C4TA04996A
  160. B. Vidyadharan, R.A. Aziz, I.I. Misnon, G.M.A. Kumar, J. Ismail, M.M. Yusoff, R. Jose, J. Power Sources 270 (2014) 526. https://doi.org/10.1016/j.jpowsour.2014.07.134
  161. Y. Hu, M. Liu, Q. Yang, L. Kong, L. Kang, J. Energy Chem. 26 (2017) 49. https://doi.org/10.1016/j.jechem.2016.10.001
  162. A.M. Elshahawy, C. Guan, X. Li, H. Zhang, Y. Hu, H. Wu, S.J. Pennycook, J. Wang, Nano Energy 39 (2017) 162. https://doi.org/10.1016/j.nanoen.2017.06.042
  163. X. Liu, R. Ma, Y. Bando, T. Sasaki, Adv. Mater. 24 (2012) 2148. https://doi.org/10.1002/adma.201104753
  164. C. Nethravathi, N. Ravishankar, C. Shivakumara, M. Rajamathi, J. Power Sources 172 (2007) 970. https://doi.org/10.1016/j.jpowsour.2007.01.098

피인용 문헌

  1. Structural Properties of Vicsek-like Deterministic Multifractals vol.11, pp.6, 2018, https://doi.org/10.3390/sym11060806
  2. Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes vol.48, pp.7, 2019, https://doi.org/10.1007/s11664-019-07185-8
  3. Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor vol.9, pp.36, 2018, https://doi.org/10.1002/aenm.201901213
  4. Ti-based electrode materials for electrochemical sodium ion storage and removal vol.7, pp.39, 2019, https://doi.org/10.1039/c9ta06713b
  5. Electrochemical and Chemical Instability of Vanadium Nitride in the Synthesis of Ammonia Directly from Nitrogen vol.12, pp.2, 2018, https://doi.org/10.1002/cctc.201901558
  6. Synthesis of Metal Phosphide Nanoparticles Supported on Porous N‐Doped Carbon Derived from Spirulina for Universal‐pH Hydrogen Evolution vol.13, pp.2, 2018, https://doi.org/10.1002/cssc.201902920
  7. Tungsten Nitride, Well‐Dispersed on Porous Carbon: Remarkable Catalyst, Produced without Addition of Ammonia, for the Oxidative Desulfurization of Liquid Fuel vol.16, pp.12, 2020, https://doi.org/10.1002/smll.201901564
  8. Boron triggers the phase transformation of Mo x C (α-MoC1−x /β-Mo2C) for enhanced hydrogen production vol.31, pp.10, 2018, https://doi.org/10.1088/1361-6528/ab5a25
  9. Synthesis of hierarchical structured rare earth metal-doped Co3O4 by polymer combustion method for high performance electrochemical supercapacitor electrode materials vol.26, pp.4, 2018, https://doi.org/10.1007/s11581-019-03330-9
  10. Study on the voltage drop of vanadium nitride/carbon composites derived from the pectin/VCl3 membrane as a supercapacitor anode material vol.44, pp.17, 2018, https://doi.org/10.1039/d0nj00997k
  11. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids vol.10, pp.6, 2020, https://doi.org/10.3390/nano10061141
  12. Photoelectrochemical In Situ Energy Storage and the Anticorrosion Dual Function System Based on Loose Carbon Nitride Thick Film Electrodes vol.2, pp.7, 2018, https://doi.org/10.1021/acsaelm.0c00377
  13. Catalyst Free MnO2 Nanoflakes for Electrochemical Capacitor vol.167, pp.11, 2018, https://doi.org/10.1149/1945-7111/aba369
  14. One-pot carbonization synthesis of γ-Fe2O3/Fe/carbon composite for high Li-storage and excellent stability vol.275, pp.None, 2020, https://doi.org/10.1016/j.matlet.2020.128066
  15. Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li–O 2 Batteries (LOBs): A Brief Review vol.10, pp.11, 2018, https://doi.org/10.3390/nano10112106
  16. Cost-Effective Synthesis of Efficient CoWO 4 /Ni Nanocomposite Electrode Material for Supercapacitor Applications vol.10, pp.11, 2018, https://doi.org/10.3390/nano10112195
  17. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application vol.366, pp.None, 2018, https://doi.org/10.1016/j.electacta.2020.137412
  18. Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers vol.9, pp.4, 2018, https://doi.org/10.1039/d0ta09655e
  19. Preparation of Porous Carbon Nanofiber Electrodes Derived from 6FDA-Durene/PVDF Blends and Their Electrochemical Properties vol.13, pp.5, 2018, https://doi.org/10.3390/polym13050720
  20. 2021 Roadmap: electrocatalysts for green catalytic processes vol.4, pp.2, 2018, https://doi.org/10.1088/2515-7639/abd596
  21. Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction vol.33, pp.3, 2018, https://doi.org/10.1016/j.jksus.2021.101379
  22. Fabrication of ZnO nanorods based gas sensor pattern by photolithography and lift off techniques vol.33, pp.3, 2018, https://doi.org/10.1016/j.jksus.2021.101397
  23. A Tröger’s Base-Derived Covalent Organic Polymer Containing Carbazole Units as a High-Performance Supercapacitor vol.13, pp.9, 2018, https://doi.org/10.3390/polym13091385
  24. Heteroatom-doped graphene-based materials for sustainable energy applications: A review vol.143, pp.None, 2021, https://doi.org/10.1016/j.rser.2021.110849
  25. Ni Foam-Supported Tin Oxide Nanowall Array: An Integrated Supercapacitor Anode vol.26, pp.15, 2018, https://doi.org/10.3390/molecules26154517
  26. Metal-organic framework (MOF) derived flower-shaped CoSe2 nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions vol.5, pp.19, 2021, https://doi.org/10.1039/d1se01112j
  27. Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance vol.15, pp.None, 2018, https://doi.org/10.1016/j.jmrt.2021.09.129
  28. Facile Hydrothermal Synthesis and Supercapacitor Performance of Mesoporous Necklace-Type ZnCo2O4 Nanowires vol.11, pp.12, 2021, https://doi.org/10.3390/catal11121516
  29. Preparation of Magnetically Driven Nickel Phosphide Nanowires and Their Electrochemical Properties vol.12, pp.1, 2018, https://doi.org/10.3390/app12010049
  30. Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides vol.430, pp.p1, 2018, https://doi.org/10.1016/j.cej.2021.132699
  31. Synthesis of hierarchical multilayer N-doped Mo2C@MoO3 nanostructure for high-performance supercapacitor application vol.46, pp.None, 2018, https://doi.org/10.1016/j.est.2021.103824