DOI QR코드

DOI QR Code

Physiological and biochemical responses of elevated ozone on Pterocarpus indicus under well-watered and drought conditions

  • Baek, Saeng Geul (Seed Viability Research Team, Baekdudaegan National Arboretum) ;
  • Park, Jeong ho (Department of Environmental Horticulture, University of Seoul) ;
  • Kwak, Myeong Ja (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Jong Kyu (Department of Environmental Horticulture, University of Seoul) ;
  • Na, Chae Sun (Seed Viability Research Team, Baekdudaegan National Arboretum) ;
  • Lee, Byulhana (Seed Viability Research Team, Baekdudaegan National Arboretum) ;
  • Woo, Su Young (Department of Environmental Horticulture, University of Seoul)
  • Received : 2018.01.11
  • Accepted : 2018.06.12
  • Published : 2018.12.31

Abstract

Seedlings of Pterocarpus indicus were grown in both well-watered and drought stress conditions in phytotron. Seedlings grown under well-watered and drought stress conditions were exposed to either combined or without ozone of 200 ppb for one month. First, the physiological responses to elevated ozone levels indicated a decreased biomass. The seedlings grown in arid soil and exposed to ozone showed less biomass than those grown in arid soil but not exposed to ozone. Moreover, all the seedlings except the well-watered and unexposed ones showed a significantly lower photosynthetic rate ($P_N$) over time. However, with the accumulation of ozone injuries, the antioxidant enzyme activities increased overall. In the study results, when exposed to ozone, the well-watered seedlings exhibited more antioxidative enzyme activity than did the seedlings grown in arid soil. Generally, P. indicus in arid soil suffered less damage from elevated ozone than did the well-watered plants.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Andersen CP. 2003. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 157(2):213-228. https://doi.org/10.1046/j.1469-8137.2003.00674.x
  2. Alonso R, Elvira S, Castillo FJ, Gimeno BS. 2001. Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ. 24(9):905-916. https://doi.org/10.1046/j.0016-8025.2001.00738.x
  3. Beyers JL, Riechers GH, Temple PJ. 1992. Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.). New Phytol. 122(1):81-90. https://doi.org/10.1111/j.1469-8137.1992.tb00055.x
  4. Bortier K, Ceulemans R, Temmerman LE. 2000. Effects of ozone exposure on growth and photosynthesis of beech seedlings (Fagus sylvatica). New Phytol. 146(2):271-280. https://doi.org/10.1046/j.1469-8137.2000.00633.x
  5. Cakmak I, Strbac D, Marchner H. 1993. Activities of hydrogen peroxide scavenging enzymes in germinating Wheat Seeds. J Exp Bot. 44(1):127-132. https://doi.org/10.1093/jxb/44.1.127
  6. Chance B, Maehly AC. 1955. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO, editors Methods in enzymology, Vol. 2. Academic Press: New York; pp. 764-775.
  7. Darrall NM. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell Environ. 12(1):1-30. https://doi.org/10.1111/j.1365-3040.1989.tb01913.x
  8. Foyer CH, Descourvieres P, Kunert KJ. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17(5):507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  9. Giannopolitis N, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309-314. https://doi.org/10.1104/pp.59.2.309
  10. Heath RL. 1994. Possible mechanisms for the inhibition of photosynthesis by ozone. Photosyn. Res. 39(3):439-451. https://doi.org/10.1007/BF00014597
  11. Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D. 2002. Complex interactive effects of drought and ozone stress on the antioxidant defense systems of two wheat cultivars. Plant Physiol Biochem. 40(6-8):691-696. https://doi.org/10.1016/S0981-9428(02)01410-9
  12. Hossain MA, Nakano Y, Asada K. 1984. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25(3):385-395.
  13. Karlsson PE, Medin EL, Wickstrom H, Sellden G, Wallin G, Ottosson S, Skarby L. 1995. Ozone and drought stress - interactive effects on the growth and physiology of Norway spruce (Picea abies (L.) Karst.). Water Air Soil Pollut. 85(3):1325-1330. https://doi.org/10.1007/BF00477165
  14. Karlsson PE, Medin EL, Wallin G, Sellden G, Skarby L. 1997. Effects of ozone and drought stress on the physiology and growth of two clones of Norway spruce (Picea abies). New Phytol. 136(2):265-275. https://doi.org/10.1046/j.1469-8137.1997.00735.x
  15. Kronfusz G, Polle A, Tausz M, Havranek WM, Wieser G. 1998. Effects of ozone mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce (Picea abies (L.) Karst.). Trees 12(8):482-489. https://doi.org/10.1007/PL00009730
  16. Landolt W, Buhlmann U, Bleuler P, Bucher JB. 2000. Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Environ Pollut. 109(3):473-478. https://doi.org/10.1016/S0269-7491(00)00050-6
  17. Laisk A, Kull O, Moldau H. 1989. Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol. 90(3):1163-1167. https://doi.org/10.1104/pp.90.3.1163
  18. Lee JS, Kim BW. 1997. Stomatal response by zone. The Korean J Ecol. 20(2):83-94.
  19. Lee JC, Han SH, Jang SS, Chl KJ, Kim YY. 2002. Effects of ozone uptake rate on photosynthesis and antioxidant activity in the leaves of Betula species. Korean Journal of Agric For Meteorol. 4(2):72-79.
  20. Lee JC, Oh CY, Han SH, Kim PG. 2005. Photosynthetic Characteristics and a Sensitive Indicator for $O_3$-exposed Platanus orientalis. Korean J Agric For Meteorol. 7(3):220-226.
  21. Lei Y, Yin C, Li C. 2006. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Planta. 127(2):182-191. https://doi.org/10.1111/j.1399-3054.2006.00638.x
  22. Li C. 2000. Population differences in water-sue efficiency of Eucalyptus microtheca seedlings under different watering regimes. Physiol Planta.108(2):134-139. https://doi.org/10.1034/j.1399-3054.2000.108002134.x
  23. Matyssek R, Innes JL. 1999. Ozone - a risk factor for trees and forests in europe? Water Air Soil Pollut. 116(1):199-226. https://doi.org/10.1023/A:1005267214560
  24. Miller JE, Booker FL, Fiscus EL, Heagle AS, Pursley WA, Vozzo SF, Heck WW. 1994. Ultraviolet- B radiation and ozone effects on growth, yield, and photosynthesis of Soybean. J Environ Qual. 23:83-91.
  25. Moraes RM, Bulbovas P, Furlan CM, Domingos M, Meirelles ST, Delitti WBC, Sanz MJ. 2006. Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation. Ecotox Environ Safety. 63(2):306-312. https://doi.org/10.1016/j.ecoenv.2004.10.009
  26. Nali C, Paoletti E, Marabottini R, Rocca GD, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M. 2004. Ecophysiological and biochemical strategies of response to ozone in Medriterranean evergreen broadleaf species. Atmos Environ. 38(15):2247-2257. https://doi.org/10.1016/j.atmosenv.2003.11.043
  27. Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22(5):867-880.
  28. Noctor G, Foyer C. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Plant Physiol. Annual Rev Plant Physiol. Plant Mol Biol. 49, 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  29. Oksanen E, Saleem A. 1999. Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth). Plant Cell Environ. 22(11):1401-1411. https://doi.org/10.1046/j.1365-3040.1999.00501.x
  30. Panek JA, Goldstein AH. 2001. Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree physiol. 21(5):337-344. https://doi.org/10.1093/treephys/21.5.337
  31. Pearson M, Mansfield A. 1993. Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.). New Phytol. 123(2):351-358. https://doi.org/10.1111/j.1469-8137.1993.tb03745.x
  32. Pearson M, Mansfield TA. 1994. Effects of exposure to ozone and water stress on the following season's growth of beech (Fagus sylvatica L.). New Phytol. 126(3):511-515. https://doi.org/10.1111/j.1469-8137.1994.tb04249.x
  33. Pell EJ, Eckardt NA, Glick RE. 1994. Biochemical and molecular basis for impairment of photosynthetic potential. Photosyn. Res. 39(3):453-462. https://doi.org/10.1007/BF00014598
  34. Smirnoff N. 1996. The function and metabolism of ascorbic acid in plants. Ann Bot. 78(6):661-669. https://doi.org/10.1006/anbo.1996.0175
  35. Wallin G, Skarby L. 1992. The influence of ozone on the stomatal and non-stomatal limitation of photosynthsis in Norway spruce, Picea abies (L.) Karst, exposed to soil moisture deficit. Trees 6(3):128-136. https://doi.org/10.1007/BF00202428
  36. Woo SY. 1997. Ozone-environmental effects on gas exchange and growth of Hybrid Poplar (Populus trichocarpa x P. deltoids) seedlings. Korean J Ecol. 20(4):239-244.
  37. Woo SY, Lee SH, Lee DS. 2004. Air pollution effects on the photosynthesis and chlorophyll contents of street tree in Seoul. Korean J Agric For Meterol. 6(1):24-29.
  38. Woo SY, Lee DK, Lee YK. 2007. Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. Photosynthetica. 45(2):293-295. https://doi.org/10.1007/s11099-007-0047-8
  39. Wu YX, Tiedemann AV. 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut. 116(1):37-47. https://doi.org/10.1016/S0269-7491(01)00174-9
  40. Zhang J, Kirkham MB. 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35(5):785-791. https://doi.org/10.1093/oxfordjournals.pcp.a078658

Cited by

  1. Ozone Response of Leaf Physiological and Stomatal Characteristics in Brassica juncea L. at Supraoptimal Temperatures vol.10, pp.4, 2021, https://doi.org/10.3390/land10040357