DOI QR코드

DOI QR Code

Effect of Poling Electric Field and Temperature Change on the Dielectric Anomalies of Relaxor Ferroelectric Strontium-Barium-Niobate Single Crystals

  • Received : 2018.05.24
  • Accepted : 2018.08.06
  • Published : 2018.11.30

Abstract

The dielectric properties of the uniaxial relaxor ferroelectric $Sr_xBa_{1-x}Nb_2O_6$ with x = 0.75 were investigated along the polar [001] direction as a function of temperature. The capacitance maximum showed the frequency dispersion commonly observed in relaxors. Additional weak dielectric anomalies were observed in the paraelectric phase; they were only seen during the heating process and disappeared upon subsequent cooling. These were attributed to the existence of large polar clusters strongly pinned at defects and/or to random fields and their metastable characters. Aligning the ferroelectric domains along the polar axis at room temperature removed the high-temperature dielectric anomalies. The dependences of the capacitance and the dielectric maximum temperature on the magnitude of the poling field were investigated.

Keywords

Acknowledgement

Supported by : JSPS, National Research Foundation of Korea (NRF)

References

  1. G. H. Haertling and C. E. Land, J. Am. Ceram. Soc. 54, 1 (1971).
  2. G. Burns and F. H. Dacol, Solid State Commun. 42, 9 (1982). https://doi.org/10.1016/0038-1098(82)91018-3
  3. A. M. Glass, J. Appl. Phys. 40, 4699 (1969). https://doi.org/10.1063/1.1657277
  4. J-H. Ko and S. Kojima, Appl. Phys. Lett. 91, 082903 (2007). https://doi.org/10.1063/1.2772771
  5. J. Dec, W. Kleemann, Th. Woike and R. Pankrath, Eur. Phys. J. B 14, 627 (2000). https://doi.org/10.1007/s100510051071
  6. R. Blinc, J. Dolinsek, A. Gregorovic, B. Zalar, C. Filipic, Z. Kutnjak, A. Levstik and R. Pirc, Phys. Rev. Lett. 83, 424 (1999). https://doi.org/10.1103/PhysRevLett.83.424
  7. L. A Bursill and P. J. Lin, Acta Cryst. B 43, 49 (1987).
  8. H. Arndt, T. V. Dung and G. Schmidt, Ferroelectrics 97, 247 (1989). https://doi.org/10.1080/00150198908018098
  9. F. Prokert, H. Ritter and J. Ihringer, Ferroelectric Lett. 24, 1 (1998). https://doi.org/10.1080/07315179808204449
  10. H. Fan, L. Zhang and X. Yao, J. Mater. Sci. 33, 895 (1998). https://doi.org/10.1023/A:1004343324103
  11. J-H. Ko and S. Kojima, Jpn. J. Appl. Phys. 41, 7038 (2002). https://doi.org/10.1143/JJAP.41.7038
  12. F. M. Jiang, J-H. Ko and S. Kojima, Phys. Rev. B 66, 184301 (2002). https://doi.org/10.1103/PhysRevB.66.184301
  13. E. Dul'kin, S. Kojima and M. Roth, J. Appl. Phys. 110, 044106 (2011). https://doi.org/10.1063/1.3622670
  14. A. K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994). https://doi.org/10.1103/PhysRevLett.72.1100
  15. J. Dec, W. Kleemann, V. V. Shvartsman, D. C. Lupascu and T. Lukasiewicz, Appl. Phys. Lett. 100, 052903 (2012). https://doi.org/10.1063/1.3680599
  16. K. Matyjasek, J. Dec, S. Miga and T. Lukasiewicz, Condens. Matter Phys. 16, 31701 (2013). https://doi.org/10.5488/CMP.16.31701
  17. D. V. Isakov, M. S. Belsley, T. R. Volk and L. I. Ivleva, Appl. Phys. Lett. 92, 032904 (2008). https://doi.org/10.1063/1.2830993
  18. J. Dec, W. Kleemann, S. Miga, V. V. Shvartsman, T. Lukasiewicz and M. Swirkowicz, Phase Transitions 80, 131 (2007). https://doi.org/10.1080/01411590701315492
  19. V. V. Shvartsman, W. Kleemann, T. Lukasiewicz and J. Dec, Phys. Rev. B 77, 054105 (2008). https://doi.org/10.1103/PhysRevB.77.054105
  20. W. Kleemann, V. Bobnar, J. Dec, P Lehnen, R. Pankrath and S. A. Prosandeev, Ferroelectrics 261, 43 (2001). https://doi.org/10.1080/00150190108216262
  21. G. Shabbir, S. Kojima and C. Feng, J. Appl. Phys. 100, 064107 (2006), and references therein. https://doi.org/10.1063/1.2337103