DOI QR코드

DOI QR Code

Elastic α-12C Scattering with the Ground State of 16O at Low Energies in Effective Field Theory

  • Ando, Shung-Ichi (School of Mechanical and ICT Convergence Engineering, Sunmoon University)
  • Received : 2018.05.08
  • Accepted : 2018.07.24
  • Published : 2018.11.30

Abstract

Inclusion of the ground state of $^{16}O$ is investigated for a study of elastic ${\alpha}-^{12}C$ scattering for the l = 0 channel at low energies in effective field theory. We employ a Markov chain Monte Carlo method for the parameter fitting and find that the uncertainties of the fitted parameters are significantly improved compared to those of our previous study. We then calculate the asymptotic normalization constants of the $0^+$ states of $^{16}O$ and compare them with the experimental data and the previous theoretical estimates. We discuss implications of the results of the present work.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. W. A. Fowler, Rev. Mod. Phys. 56, 149 (1984). https://doi.org/10.1103/RevModPhys.56.149
  2. L. R. Buchmann and C. A. Barnes, Nucl. Phys. A 777, 254 (2006). https://doi.org/10.1016/j.nuclphysa.2005.01.005
  3. A. Coc, F. Hammache and J. Kiener, Eur. Phys. J. A 51, 34 (2015). https://doi.org/10.1140/epja/i2015-15034-y
  4. C. A. Bertulani and T. Kajino, Prog. Part. Nucl. Phys. 89, 56 (2016). https://doi.org/10.1016/j.ppnp.2016.04.001
  5. R. J. deBoer et al., Rev. Mod. Phys. 89, 035007 (2017) https://doi.org/10.1103/RevModPhys.89.035007
  6. R. Plaga et al., Nucl. Phys. A 465, 291 (1987). https://doi.org/10.1016/0375-9474(87)90436-2
  7. P. Tischhauser et al., Phys. Rev. C 79, 055803 (2009).
  8. A. M. Mukhamedzhanov and R. E. Tribble, Phys. Rev. C 59, 3418 (1999). https://doi.org/10.1103/PhysRevC.59.3418
  9. L. D. Blokhintsev and Y. O. Yeremenko, Phys. Atom. Nucl. 71, 1219, (2008). https://doi.org/10.1134/S1063778808070144
  10. R. E. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014). https://doi.org/10.1088/0034-4885/77/10/106901
  11. M. L. Avila et al., Phys. Rev. Lett. 114, 071101 (2015). https://doi.org/10.1103/PhysRevLett.114.071101
  12. S-I. Ando, Phys. Rev. C 97, 014604 (2018). https://doi.org/10.1103/PhysRevC.97.014604
  13. G. Rupak, Nucl. Phys. A 678, 405 (2000). https://doi.org/10.1016/S0375-9474(00)00323-7
  14. S. Ando, R. H. Cyburt, S. W. Hong and C. H. Hyun, Phys. Rev. C 74, 025809 (2006). https://doi.org/10.1103/PhysRevC.74.025809
  15. X. Kong and F. Ravndal, Nucl. Phys. A 656, 421 (1999). https://doi.org/10.1016/S0375-9474(99)00314-0
  16. M. Butler and J-W. Chen, Phys. Lett. B 520, 87 (2001). https://doi.org/10.1016/S0370-2693(01)01152-2
  17. S. Ando, J. W. Shin, C. H. Hyun, S. W. Hong and K. Kubodera, Phys. Lett. B 668, 187 (2008). https://doi.org/10.1016/j.physletb.2008.08.040
  18. J-W. Chen, C-P. Liu and S-H. Yu, Phys. Lett. B 720, 385 (2013). https://doi.org/10.1016/j.physletb.2013.02.019
  19. R. Higa, G. Rupak and A. Vaghani, Eur. Phys. J. E 54, 89 (2018).
  20. X. Zhang, K. M. Nollett and D. R. Phillips, Phys. Rev. C 89, 051602(R) (2014).
  21. E. Ryberg, C. Forssen, H-W. Hammer and L. Platter, Eur. Phys. J. A 50, 170 (2014). https://doi.org/10.1140/epja/i2014-14170-2
  22. P. F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002). https://doi.org/10.1146/annurev.nucl.52.050102.090637
  23. E. Braaten and H-W. Hammer, Phys. Rept. 428, 259 (2006). https://doi.org/10.1016/j.physrep.2006.03.001
  24. U-G. MeiBner, Phys. Scripta 91, 033005 (2016). https://doi.org/10.1088/0031-8949/91/3/033005
  25. H-W. Hammer, C. Ji and D. R. Phillips, J. Phys. G 44, 103002 (2017). https://doi.org/10.1088/1361-6471/aa83db
  26. S-I. Ando, J. Korean Phys. Soc. 70, 358 (2017). https://doi.org/10.3938/jkps.70.358
  27. S-I. Ando, Int. J. Mod. Phys. E 25, 1641005 (2016).
  28. S-I. Ando, Eur. Phys. J. A 52, 130 (2016). https://doi.org/10.1140/epja/i2016-16130-2
  29. T. Teichmann, Phys. Rev. 83, 141 (1951). https://doi.org/10.1103/PhysRev.83.141
  30. S. R. Beane and M. J. Savage, Nucl. Phys. A 694, 511 (2001). https://doi.org/10.1016/S0375-9474(01)01088-0
  31. S. Ando and C. H. Hyun, Phys. Rev. C 72, 014008 (2005). https://doi.org/10.1103/PhysRevC.72.014008
  32. S. Ando, J. W. Shin, C. H. Hyun and S. W. Hong, Phys. Rev. C 76, 064001 (2007). https://doi.org/10.1103/PhysRevC.76.064001
  33. S-I. Ando, Eur. Phys. J. A 33, 185 (2007). https://doi.org/10.1140/epja/i2007-10448-8
  34. S-I. Ando and C. H. Hyun, Phys. Rev. C 86, 024002 (2012). https://doi.org/10.1103/PhysRevC.86.024002
  35. A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1957).
  36. J-M. Sparenberg, P. Capel and D. Baye, Phys. Rev. C 81, 011601 (2010).
  37. D. Foreman-Mackey et al., arXiv:1202.3665v4 [astro-ph.IM] (2013).
  38. Yu. V. Orlov, B. F. Irgaziev and L. I. Nikitina, Phys. Rev. C 93, 014612 (2016). https://doi.org/10.1103/PhysRevC.93.014612
  39. Yu. V. Orlov, B. F. Irgaziev and J-U. Nabi, Phys. Rev. C 96, 025809 (2017). https://doi.org/10.1103/PhysRevC.96.025809
  40. O. L. Ramirez Suarez and J-M. Sparenberg, Phys. Rev. C 96, 034601 (2017). https://doi.org/10.1103/PhysRevC.96.034601
  41. M. Moeini Ariani, A. Koohi and S. Yarmahmoodi, Int. J. Mod. Phys. E 26, 1750080 (2017).
  42. S-I. Ando, arXiv:1806.09073 [nucl-th].

Cited by

  1. $ S_{E1}$ factor of radiative $ \alpha $ capture on $ \tensor_{}^{12}{\mathrm{C}}{_{C}}$ in cluster effective field theory vol.100, pp.1, 2019, https://doi.org/10.1103/physrevc.100.015807
  2. Effective Range Expansion and Elastic α-12C Scattering at Low Energies vol.75, pp.3, 2019, https://doi.org/10.3938/jkps.75.202
  3. Elastic α−C12 scattering at low energies with the sharp resonant 03+ state of O16 vol.102, pp.3, 2020, https://doi.org/10.1103/physrevc.102.034611
  4. Cluster effective field theory and nuclear reactions vol.57, pp.1, 2018, https://doi.org/10.1140/epja/s10050-020-00304-8