DOI QR코드

DOI QR Code

Thermodynamic Properties of the Modified Yukawa Potential

  • Okorie, U.S. (Department of Physics, Akwa Ibom State University) ;
  • Ibekwe, E.E. (Department of Physics, Akwa Ibom State University) ;
  • Ikot, A.N. (Department of Physics, Theoretical Physics Group, University of Port Harcourt) ;
  • Onyeaju, M.C. (Department of Physics, Theoretical Physics Group, University of Port Harcourt) ;
  • Chukwuocha, E.O. (Department of Physics, Theoretical Physics Group, University of Port Harcourt)
  • Received : 2018.04.10
  • Accepted : 2018.05.03
  • Published : 2018.11.15

Abstract

Within the framework of the modified factorization method, we solve the $Schr{\ddot{o}}dinger$ equation with the modified Yukawa potential. The energy spectrum is obtained using the Pekeris approximation scheme for the centrifugal term. The thermodynamic properties, including the vibrational partition function, vibrational mean energy, vibrational mean free energy, vibrational specific heat capacity and vibrational entropy, are calculated. As a special case, we compare our result with that work of Dong [Int. J. Quant. Chem. 107, 366 (2007)] and find good agreement.

Keywords

References

  1. A. N. Ikot, L. E. Akpabio and E. B. Umoren, J. Sci. Res. 3, 33 (2011).
  2. S. H. Dong, Factorization Method in Quantum Mechanics (Springer, Berlin, 2007).
  3. H. Ciftci, R. L. Hall and N. Saad, J. Phys. A: Math Gen. 36, 11807 (2003). https://doi.org/10.1088/0305-4470/36/47/008
  4. O. Bayrak, I. Boztosun and H. Ciftci, Int. J. Quantum Chem. 107, 540 (2007). https://doi.org/10.1002/qua.21141
  5. O. Bayrak and I. Boztosun, Phys. Scr. 76, 92 (2007). https://doi.org/10.1088/0031-8949/76/1/016
  6. C. A. Onate and J. O. Ojonubah, J. Theor. Appl. Phys. 10, 21 (2016). https://doi.org/10.1007/s40094-015-0196-2
  7. A. N. Ikot, H. P. Obong, T. M. Abbey, S. Zare, M. Ghafourian and H. Hassanabadi, Few-Body Syst. 57, 807 (2016). https://doi.org/10.1007/s00601-016-1111-3
  8. C. A. Onate, M. C. Onyeaju, A. N. Ikot and J. O. Ojonubah, Chinese J. Phys. 54, 820 (2016). https://doi.org/10.1016/j.cjph.2016.08.007
  9. C. A. Onate, A. N. Ikot, M. C. Onyeaju and M. E. Udoh, Karbala Int. J. Modern Sci. 3, 1 (2017). https://doi.org/10.1016/j.kijoms.2016.12.001
  10. A. N. Ikot, O. A. Awoga, A. D. Antia, H. Hassanabadi and E. Maghsoodi, Few-Body Syst. 54, 2041 (2013). https://doi.org/10.1007/s00601-013-0706-1
  11. I. B. Okon, O. Popoola and C. N. Isonguyo, Hindawi Adv. in High Energy Phys. 2017, 9671816 (2017).
  12. C. A. Onate and J. O. A. Idiodi, Chinese J. Phys. 53, 120001 (2015).
  13. A. N. Ikot, O. A. Awoga, H. Hassanabadi and E. Maghsodi, Commun. Theor. Phys. 61, 457 (2014). https://doi.org/10.1088/0253-6102/61/4/09
  14. B. J. Falaye, K. J. Oyewumi and M. Abbas, Chin. Phys. B 22, 110301 (2013). https://doi.org/10.1088/1674-1056/22/11/110301
  15. A. D. Antia, A. N. Ikot, H. Hassanabadi and E. Maghsoodi, Indian J. Phys. 87, 1133 (2013). https://doi.org/10.1007/s12648-013-0336-y
  16. H. Salehi, Appl. Math. 2, 999 (2011). https://doi.org/10.4236/am.2011.28138
  17. D. Agboola, Acta Physica Polonica A. 120, 371 (2011). https://doi.org/10.12693/APhysPolA.120.371
  18. J. Y. Liu, G. U. Zhang and C. S. Jia, Phys. Lett. A. 377, 1444 (2013). https://doi.org/10.1016/j.physleta.2013.04.019
  19. H. M. Tang, G. C. Liang, L. H. Zhang, F. Zhao and C. S. Jia, Can. J. Chem. 92, 341 (2014). https://doi.org/10.1139/cjc-2013-0563
  20. C. S. Jia and Y. Jia, Eur. Phys. J. D 71, 3 (2017). https://doi.org/10.1140/epjd/e2016-70415-y
  21. B. J. Falaye, K. J. Oyewumi, S. M. Ikhdair and M. Hamzavi, Phys. Scr. 89, 115204 (2014). https://doi.org/10.1088/0031-8949/89/11/115204
  22. J. Y. Liu, X. T. Hu and C. S. Jia, Can. J. Chem. 92, 40 (2014). https://doi.org/10.1139/cjc-2013-0396
  23. A. N. Ikot, E. Maghsodi, S. Zarrinkamar and H. Hassanabadi, Ind. J. Phys. 88, 282 (2013).
  24. S. M. Ikhdair and M. Hamzavi, Few-Body Syst. 53, 487 (2012). https://doi.org/10.1007/s00601-012-0475-2
  25. M. Hamzavi, S. M. Ikhdair and B. I. Ita, Phys. Scr. 85, 045009 (2012). https://doi.org/10.1088/0031-8949/85/04/045009
  26. S. M Ikhdair, Cent. Eur. J. Phys. 10, 361 (2012).
  27. S. Hassanabadi, M. Ghominejad, S. Zarrinkamar and H. Hassanabadi, Chin. Phys. B 22, 060303 (2013). https://doi.org/10.1088/1674-1056/22/6/060303
  28. H. Taseli, Int. J. Quant. Chem. 63, 949 (1997). https://doi.org/10.1002/(SICI)1097-461X(1997)63:5<949::AID-QUA5>3.0.CO;2-W
  29. K. J. Oyewumi, B. J. Falaye, C. A. Onate, O. J. Oluwadare and W. A. Yahya, Mol. Phys. 112, 127 (2014). https://doi.org/10.1080/00268976.2013.804960
  30. A. N. Ikot, B. C. Lutfuoglu, M. I. Ngweke, M. E. Udoh, S. Zare and H. Hassanabadi, Eur. Phys. J. Plus 131, 419 (2016). https://doi.org/10.1140/epjp/i2016-16419-5
  31. S. H. Dong, M. Lozada-Cassou, J. Yu, F. Jimenez-Angeles and A. L. Rivera, Int. J. Quant. Chem. 107, 366 (2007). https://doi.org/10.1002/qua.21103
  32. X. Q. Song, C. W. Wang and C. S. Jia, Chem. Phys. Lett. 673, 50 (2017). https://doi.org/10.1016/j.cplett.2017.02.010
  33. C. S. Jia, L. H. Zhang and C. W. Wang, Chem. Phys. Lett. 667, 211 (2017). https://doi.org/10.1016/j.cplett.2016.11.059
  34. A. N. Ikot, E. O. Chukwuocha, M. C. Onyeaju, C. A. Onate, B. I. Ita and M. E. Udoh, Pramana J. Phys. 90, 22 (2018). https://doi.org/10.1007/s12043-017-1510-0
  35. C. I. Pekeris, Phys. Rev. 45, 98 (1934). https://doi.org/10.1103/PhysRev.45.98
  36. W. A. Yahya and K. J. Oyewumi, J. Asso. Arab Univ. for Basic and Appl. Sci. 21, 53 (2016).
  37. C. E. Pearson, Handbook of Applied Mathematics (Van Nostrand Reinhold, New York, 1983).

Cited by

  1. Superstatistics and canonical quantization of the damped harmonic oscillator vol.34, pp.14, 2019, https://doi.org/10.1142/s0217732319501086
  2. Rotation-vibrational energies for some diatomic molecules with improved Rosen-Morse potential in D-dimensions vol.25, pp.6, 2018, https://doi.org/10.1007/s00894-019-4040-5
  3. Approximate solution of the Schrödinger equation with Manning-Rosen plus Hellmann potential and its thermodynamic properties using the proper quantization rule vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12835-3
  4. Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential vol.134, pp.8, 2019, https://doi.org/10.1140/epjp/i2019-12783-x
  5. A Statistical Mechanical Analysis on the Bound State Solution of an Energy-Dependent Deformed Hulthén Potential Energy vol.71, pp.9, 2018, https://doi.org/10.1088/0253-6102/71/9/1127
  6. Superstatistics of Modified Rosen-Morse Potential with Dirac Delta and Uniform Distributions vol.71, pp.10, 2018, https://doi.org/10.1088/0253-6102/71/10/1246
  7. Any l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential model vol.94, pp.2, 2018, https://doi.org/10.1007/s12648-019-01467-x
  8. Eigensolution and various properties of the screened cosine Kratzer potential in D dimensions via relativistic and non-relativistic treatment vol.135, pp.3, 2018, https://doi.org/10.1140/epjp/s13360-020-00299-7
  9. Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential vol.94, pp.4, 2018, https://doi.org/10.1007/s12648-019-01477-9
  10. Thermal properties of Deng-Fan-Eckart potential model using Poisson summation approach vol.58, pp.5, 2018, https://doi.org/10.1007/s10910-020-01107-4
  11. The Improved Deformed Exponential‐type Potential Energy Model for N 2 , NI , SCI , and RBH Diatomic Molecules vol.41, pp.6, 2020, https://doi.org/10.1002/bkcs.12039
  12. Diatomic molecules energy spectra for the generalized Mobius square potential model vol.34, pp.21, 2018, https://doi.org/10.1142/s0217979220502094
  13. Vibrational Entropy and Complexity Measures in Modified Pöschl-Teller Plus Woods-Saxon potential vol.61, pp.3, 2018, https://doi.org/10.1007/s00601-020-01554-4
  14. Thermostatistical analysis for short-range interaction potentials vol.17, pp.13, 2018, https://doi.org/10.1142/s0219887820501935
  15. Theoretic quantum information entropies for the generalized hyperbolic potential vol.120, pp.24, 2018, https://doi.org/10.1002/qua.26410
  16. Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential vol.95, pp.3, 2021, https://doi.org/10.1007/s12648-019-01670-w
  17. Statistical analysis and information theory of screened Kratzer-Hellmann potential model vol.99, pp.7, 2021, https://doi.org/10.1139/cjp-2020-0041
  18. Masses and thermodynamic properties of a quarkonium system vol.99, pp.11, 2018, https://doi.org/10.1139/cjp-2020-0578