References
- A. N. Ikot, L. E. Akpabio and E. B. Umoren, J. Sci. Res. 3, 33 (2011).
- S. H. Dong, Factorization Method in Quantum Mechanics (Springer, Berlin, 2007).
- H. Ciftci, R. L. Hall and N. Saad, J. Phys. A: Math Gen. 36, 11807 (2003). https://doi.org/10.1088/0305-4470/36/47/008
- O. Bayrak, I. Boztosun and H. Ciftci, Int. J. Quantum Chem. 107, 540 (2007). https://doi.org/10.1002/qua.21141
- O. Bayrak and I. Boztosun, Phys. Scr. 76, 92 (2007). https://doi.org/10.1088/0031-8949/76/1/016
- C. A. Onate and J. O. Ojonubah, J. Theor. Appl. Phys. 10, 21 (2016). https://doi.org/10.1007/s40094-015-0196-2
- A. N. Ikot, H. P. Obong, T. M. Abbey, S. Zare, M. Ghafourian and H. Hassanabadi, Few-Body Syst. 57, 807 (2016). https://doi.org/10.1007/s00601-016-1111-3
- C. A. Onate, M. C. Onyeaju, A. N. Ikot and J. O. Ojonubah, Chinese J. Phys. 54, 820 (2016). https://doi.org/10.1016/j.cjph.2016.08.007
- C. A. Onate, A. N. Ikot, M. C. Onyeaju and M. E. Udoh, Karbala Int. J. Modern Sci. 3, 1 (2017). https://doi.org/10.1016/j.kijoms.2016.12.001
- A. N. Ikot, O. A. Awoga, A. D. Antia, H. Hassanabadi and E. Maghsoodi, Few-Body Syst. 54, 2041 (2013). https://doi.org/10.1007/s00601-013-0706-1
- I. B. Okon, O. Popoola and C. N. Isonguyo, Hindawi Adv. in High Energy Phys. 2017, 9671816 (2017).
- C. A. Onate and J. O. A. Idiodi, Chinese J. Phys. 53, 120001 (2015).
- A. N. Ikot, O. A. Awoga, H. Hassanabadi and E. Maghsodi, Commun. Theor. Phys. 61, 457 (2014). https://doi.org/10.1088/0253-6102/61/4/09
- B. J. Falaye, K. J. Oyewumi and M. Abbas, Chin. Phys. B 22, 110301 (2013). https://doi.org/10.1088/1674-1056/22/11/110301
- A. D. Antia, A. N. Ikot, H. Hassanabadi and E. Maghsoodi, Indian J. Phys. 87, 1133 (2013). https://doi.org/10.1007/s12648-013-0336-y
- H. Salehi, Appl. Math. 2, 999 (2011). https://doi.org/10.4236/am.2011.28138
- D. Agboola, Acta Physica Polonica A. 120, 371 (2011). https://doi.org/10.12693/APhysPolA.120.371
- J. Y. Liu, G. U. Zhang and C. S. Jia, Phys. Lett. A. 377, 1444 (2013). https://doi.org/10.1016/j.physleta.2013.04.019
- H. M. Tang, G. C. Liang, L. H. Zhang, F. Zhao and C. S. Jia, Can. J. Chem. 92, 341 (2014). https://doi.org/10.1139/cjc-2013-0563
- C. S. Jia and Y. Jia, Eur. Phys. J. D 71, 3 (2017). https://doi.org/10.1140/epjd/e2016-70415-y
- B. J. Falaye, K. J. Oyewumi, S. M. Ikhdair and M. Hamzavi, Phys. Scr. 89, 115204 (2014). https://doi.org/10.1088/0031-8949/89/11/115204
- J. Y. Liu, X. T. Hu and C. S. Jia, Can. J. Chem. 92, 40 (2014). https://doi.org/10.1139/cjc-2013-0396
- A. N. Ikot, E. Maghsodi, S. Zarrinkamar and H. Hassanabadi, Ind. J. Phys. 88, 282 (2013).
- S. M. Ikhdair and M. Hamzavi, Few-Body Syst. 53, 487 (2012). https://doi.org/10.1007/s00601-012-0475-2
- M. Hamzavi, S. M. Ikhdair and B. I. Ita, Phys. Scr. 85, 045009 (2012). https://doi.org/10.1088/0031-8949/85/04/045009
- S. M Ikhdair, Cent. Eur. J. Phys. 10, 361 (2012).
- S. Hassanabadi, M. Ghominejad, S. Zarrinkamar and H. Hassanabadi, Chin. Phys. B 22, 060303 (2013). https://doi.org/10.1088/1674-1056/22/6/060303
- H. Taseli, Int. J. Quant. Chem. 63, 949 (1997). https://doi.org/10.1002/(SICI)1097-461X(1997)63:5<949::AID-QUA5>3.0.CO;2-W
- K. J. Oyewumi, B. J. Falaye, C. A. Onate, O. J. Oluwadare and W. A. Yahya, Mol. Phys. 112, 127 (2014). https://doi.org/10.1080/00268976.2013.804960
- A. N. Ikot, B. C. Lutfuoglu, M. I. Ngweke, M. E. Udoh, S. Zare and H. Hassanabadi, Eur. Phys. J. Plus 131, 419 (2016). https://doi.org/10.1140/epjp/i2016-16419-5
- S. H. Dong, M. Lozada-Cassou, J. Yu, F. Jimenez-Angeles and A. L. Rivera, Int. J. Quant. Chem. 107, 366 (2007). https://doi.org/10.1002/qua.21103
- X. Q. Song, C. W. Wang and C. S. Jia, Chem. Phys. Lett. 673, 50 (2017). https://doi.org/10.1016/j.cplett.2017.02.010
- C. S. Jia, L. H. Zhang and C. W. Wang, Chem. Phys. Lett. 667, 211 (2017). https://doi.org/10.1016/j.cplett.2016.11.059
- A. N. Ikot, E. O. Chukwuocha, M. C. Onyeaju, C. A. Onate, B. I. Ita and M. E. Udoh, Pramana J. Phys. 90, 22 (2018). https://doi.org/10.1007/s12043-017-1510-0
- C. I. Pekeris, Phys. Rev. 45, 98 (1934). https://doi.org/10.1103/PhysRev.45.98
- W. A. Yahya and K. J. Oyewumi, J. Asso. Arab Univ. for Basic and Appl. Sci. 21, 53 (2016).
- C. E. Pearson, Handbook of Applied Mathematics (Van Nostrand Reinhold, New York, 1983).
Cited by
- Superstatistics and canonical quantization of the damped harmonic oscillator vol.34, pp.14, 2019, https://doi.org/10.1142/s0217732319501086
- Rotation-vibrational energies for some diatomic molecules with improved Rosen-Morse potential in D-dimensions vol.25, pp.6, 2018, https://doi.org/10.1007/s00894-019-4040-5
- Approximate solution of the Schrödinger equation with Manning-Rosen plus Hellmann potential and its thermodynamic properties using the proper quantization rule vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12835-3
- Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential vol.134, pp.8, 2019, https://doi.org/10.1140/epjp/i2019-12783-x
- A Statistical Mechanical Analysis on the Bound State Solution of an Energy-Dependent Deformed Hulthén Potential Energy vol.71, pp.9, 2018, https://doi.org/10.1088/0253-6102/71/9/1127
- Superstatistics of Modified Rosen-Morse Potential with Dirac Delta and Uniform Distributions vol.71, pp.10, 2018, https://doi.org/10.1088/0253-6102/71/10/1246
- Any l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential model vol.94, pp.2, 2018, https://doi.org/10.1007/s12648-019-01467-x
- Eigensolution and various properties of the screened cosine Kratzer potential in D dimensions via relativistic and non-relativistic treatment vol.135, pp.3, 2018, https://doi.org/10.1140/epjp/s13360-020-00299-7
- Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential vol.94, pp.4, 2018, https://doi.org/10.1007/s12648-019-01477-9
- Thermal properties of Deng-Fan-Eckart potential model using Poisson summation approach vol.58, pp.5, 2018, https://doi.org/10.1007/s10910-020-01107-4
- The Improved Deformed Exponential‐type Potential Energy Model for N 2 , NI , SCI , and RBH Diatomic Molecules vol.41, pp.6, 2020, https://doi.org/10.1002/bkcs.12039
- Diatomic molecules energy spectra for the generalized Mobius square potential model vol.34, pp.21, 2018, https://doi.org/10.1142/s0217979220502094
- Vibrational Entropy and Complexity Measures in Modified Pöschl-Teller Plus Woods-Saxon potential vol.61, pp.3, 2018, https://doi.org/10.1007/s00601-020-01554-4
- Thermostatistical analysis for short-range interaction potentials vol.17, pp.13, 2018, https://doi.org/10.1142/s0219887820501935
- Theoretic quantum information entropies for the generalized hyperbolic potential vol.120, pp.24, 2018, https://doi.org/10.1002/qua.26410
- Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential vol.95, pp.3, 2021, https://doi.org/10.1007/s12648-019-01670-w
- Statistical analysis and information theory of screened Kratzer-Hellmann potential model vol.99, pp.7, 2021, https://doi.org/10.1139/cjp-2020-0041
- Masses and thermodynamic properties of a quarkonium system vol.99, pp.11, 2018, https://doi.org/10.1139/cjp-2020-0578