DOI QR코드

DOI QR Code

Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration

  • Shim, Kyu-Sik (Department of Biomedical Science, College of Medicine, Korea University) ;
  • Kim, Hak-Jun (Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College) ;
  • Kim, Sung Eum (Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College) ;
  • Park, Kyeongsoon (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2018.06.27
  • Accepted : 2018.07.28
  • Published : 2018.12.25

Abstract

In this study, we found a simple surface biofunctionalization of biphasic calcium phosphate (BCP) based on the high affinity between alendronate and the calcium ions of BCP, and the strong interaction between heparin and bone morphogenic protein-2 (BMP-2). The biofunctionalized BCP did not be precipitated well and display a remarkable enhancement of osteogenic activity of human adipose-derived stem cells by showing increased alkaline phosphatase (ALP), calcium deposition and osteogenic-related genes (i.e., Runx-2, ALP, osteocalcin, and osteopontin), and bone regeneration in the calvarial defect model. Therefore, this simple surface technique can be used to easily functionalize various calcium phosphates.

Keywords

Acknowledgement

Supported by : NRF

References

  1. S.V. Dorozhkin, Biomaterials 31 (2010) 1465. https://doi.org/10.1016/j.biomaterials.2009.11.050
  2. M.-H. Hong, S.-M. Kim, Y.-K. Lee, J. Ceram. Sci. Technol. 8 (2017) 541.
  3. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. LeGeros, J. Mater. Sci. Mater. Med. 14 (2003) 201. https://doi.org/10.1023/A:1022872421333
  4. C. Suneelkumar, K. Datta, M.R. Srinivasan, S.T. Kumar, J. Conserv. Dent. 11 (2008) 92. https://doi.org/10.4103/0972-0707.44059
  5. L. Cheng, F. Ye, R. Yang, X. Lu, Y. Shi, L. Li, H. Fan, H. Bu, Acta Biomater. 6 (2010) 1569. https://doi.org/10.1016/j.actbio.2009.10.050
  6. K.H. Muller, M. Motskin, A.J. Philpott, A.F. Routh, C.M. Shanahan, M.J. Duer, J.N. Skepper, Biomaterials 35 (2014) 1074. https://doi.org/10.1016/j.biomaterials.2013.10.041
  7. S.E. Kim, D.W. Lee, Y.P. Yun, K.S. Shim, D.I. Jeon, J.K. Rhee, H.J. Kim, K. Park, Biomed. Mater. 11 (2016) 025004. https://doi.org/10.1088/1748-6041/11/2/025004
  8. K.S. Shim, S.E. Kim, Y.P. Yun, S. Choi, H.J. Kim, K. Park, H.R. Song, Polymers 9 (2017) 297. https://doi.org/10.3390/polym9070297
  9. L. Xiong, J. Zeng, A. Yao, Q. Tu, J. Li, L. Yan, Z. Tang, Int. J. Nanomed.10 (2015) 517.
  10. X. Shi, Y. Wang, L. Ren, Y. Gong, D.A. Wang, Pharm. Res. 26 (2009) 422. https://doi.org/10.1007/s11095-008-9759-0
  11. S.E. Kim, Y.P. Yun, Y.K. Han, D.W. Lee, J.Y. Ohe, B.S. Lee, H.R. Song, K. Park, B.J. Choi, Carbohydr. Polym. 99 (2014) 700. https://doi.org/10.1016/j.carbpol.2013.08.053
  12. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426. https://doi.org/10.1126/science.1147241
  13. D.W. Lee, Y.P. Yun, K. Park, S.E. Kim, Bone 50 (2012) 974. https://doi.org/10.1016/j.bone.2012.01.007
  14. S.E. Kim, Y.P. Yun, K.S. Shim, K. Park, S.W. Choi, D.H. Suh, Colloids Surf. B Biointerfaces 122 (2014) 457. https://doi.org/10.1016/j.colsurfb.2014.06.057
  15. S.E. Kim, Y.P. Yun, J.Y. Lee, K. Park, D.H. Suh, Colloids Surf. B Biointerfaces 123 (2014) 191. https://doi.org/10.1016/j.colsurfb.2014.09.014
  16. K.S. Shim, S.E. Kim, Y.P. Yun, D.I. Jeon, H.J. Kim, K. Park, H.R. Song, J. Ind. Eng. Chem. 55 (2017) 101. https://doi.org/10.1016/j.jiec.2017.06.033
  17. D. Wang, S. Miller, M. Sima, P. Kopeckova, J. Kopecek, Bioconjug. Chem. 14 (2003) 853. https://doi.org/10.1021/bc034090j
  18. H. Uludag, Curr. Pharm. Des. 8 (2002) 1929. https://doi.org/10.2174/1381612023393585
  19. H. Uludag, T. Gao, G.R. Wohl, D. Kantoci, R.F. Zernicke, Biotechnol. Prog. 16 (2000) 1115. https://doi.org/10.1021/bp000066y
  20. H. Chen, G. Li, H. Chi, D. Wang, C. Tu, L. Pan, L. Zhu, F. Qiu, F. Guo, X. Zhu, Bioconjug. Chem. 23 (2012) 1915. https://doi.org/10.1021/bc3003088
  21. S.I. Thamake, S.L. Raut, Z. Gryczynski, A.P. Ranjan, J.K. Vishwanatha, Biomaterials 33 (2012) 7164. https://doi.org/10.1016/j.biomaterials.2012.06.026
  22. S.E. Kim, C.S. Kim, Y.P. Yun, D.H. Yang, K. Park, S.E. Kim, C.M. Jeong, J.B. Huh, Carbohydr. Polym. 114 (2014) 123. https://doi.org/10.1016/j.carbpol.2014.08.005
  23. S.E. Kim, Y.P. Yun, K.S. Shim, K. Park, S.W. Choi, D.H. Shin, D.H. Suh, Colloids Surf. B Biointerfaces 134 (2015) 453. https://doi.org/10.1016/j.colsurfb.2015.05.003
  24. S.E. Kim, S.H. Song, Y.P. Yun, B.J. Choi, I.K. Kwon, M.S. Bae, H.J. Moon, Y.D. Kwon, Biomaterials 32 (2011) 366. https://doi.org/10.1016/j.biomaterials.2010.09.008
  25. Y.P. Yun, S.J. Kim, Y.M. Lim, K. Park, H.J. Kim, S.I. Jeong, S.E. Kim, H.R. Song, J. Biomed. Nanotechnol. 10 (2014) 1080. https://doi.org/10.1166/jbn.2014.1819
  26. P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Tissue Eng. 7 (2001) 211. https://doi.org/10.1089/107632701300062859
  27. A. Winter, S. Breit, D. Parsch, K. Benz, E. Steck, H. Hauner, R.M. Weber, V. Ewerbeck, W. Richter, Arthritis Rheum. 48 (2003) 418. https://doi.org/10.1002/art.10767
  28. B.M. Strem, K.C. Hicok, M. Zhu, I. Wulur, Z. Alfonso, R.E. Schreiber, J.K. Fraser, M. H. Hedrick, Keio J. Med. 54 (2005) 132. https://doi.org/10.2302/kjm.54.132
  29. E. Yoon, S. Dhar, D.E. Chun, N.A. Gharibjanian, G.R. Evans, Tissue Eng. 13 (2007) 619. https://doi.org/10.1089/ten.2006.0102
  30. R. Ravichandran, J.R. Venugopal, S. Sundarrajan, S. Mukherjee, S. Ramakrishna, Biomaterials 33 (2012) 846. https://doi.org/10.1016/j.biomaterials.2011.10.030
  31. C. Heinemann, S. Heinemann, A. Bernhardt, H. Worch, T. Hanke, Biomacromolecules 9 (2008) 2913. https://doi.org/10.1021/bm800693d
  32. K. Senarath-Yapa, A. McArdle, A. Renda, M.T. Longaker, N. Quarto, Int. J. Mol. Sci. 15 (2014) 9314. https://doi.org/10.3390/ijms15069314
  33. D.P. Rice, Front. Oral Biol. 12 (2008) 1.
  34. Y.J. Kim, M.H. Lee, J.M. Wozney, J.Y. Cho, H.M. Ryoo, J. Biol. Chem. 279 (2004) 50773. https://doi.org/10.1074/jbc.M404145200
  35. T. Liu, Y. Gao, K. Sakamoto, T. Minamizato, K. Furukawa, T. Tsukazaki, Y. Shibata, K. Bessho, T. Komori, A. Yamaguchi, J. Cell Physiol. 211 (2007) 728. https://doi.org/10.1002/jcp.20988
  36. Y.W. Zhang, N. Yasui, K. Ito, G. Huang, M. Fujii, J. Hanai, H. Nogami, T. Ochi, K. Miyazono, Y. Ito, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 10549. https://doi.org/10.1073/pnas.180309597
  37. J.L. Dragoo, J.Y. Choi, J.R. Lieberman, J. Huang, P.A. Zuk, J. Zhang, M.H. Hedrick, P. Benhaim, J. Orthop. Res. 21 (2003) 622. https://doi.org/10.1016/S0736-0266(02)00238-3
  38. J.L. Dragoo, J.R. Lieberman, R.S. Lee, D.A. Deugarte, Y. Lee, P.A. Zuk, M.H. Hedrick, P. Benhaim, Plast. Reconstr. Surg. 115 (2005) 1665. https://doi.org/10.1097/01.PRS.0000161459.90856.AB

Cited by

  1. Development of Composite Scaffolds Based on Cerium Doped-Hydroxyapatite and Natural Gums-Biological and Mechanical Properties vol.12, pp.15, 2019, https://doi.org/10.3390/ma12152389
  2. Design and manufacture of 3D cell culture plate for mass production of cell-spheroids vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-50186-0
  3. Corrosion Protection of Nano-biphasic Calcium Phosphate Coating on Titanium Substrate vol.16, pp.5, 2018, https://doi.org/10.2174/1573413715666191113145322
  4. Multifunctional Tannic Acid-Alendronate Nanocomplexes with Antioxidant, Anti-Inflammatory, and Osteogenic Potency vol.11, pp.7, 2018, https://doi.org/10.3390/nano11071812