DOI QR코드

DOI QR Code

Synthesis and characterization of a new energy material (guanidinium dinitramide) with crystallization solvent

  • Kim, Wooram (Department of Applied Environmental Science, Kyung Hee University) ;
  • Park, Mijung (Department of Applied Environmental Science, Kyung Hee University) ;
  • Park, Yeonsoo (Department of Applied Environmental Science, Kyung Hee University) ;
  • Kwon, Younja (Department of Applied Environmental Science, Kyung Hee University) ;
  • Jo, Youngmin (Department of Applied Environmental Science, Kyung Hee University)
  • Received : 2018.03.26
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

An environmentally favorable (chlorine-free) solid oxidizer, guanidinium dinitramide [GDN; $NH_2C(NH_2)NH_2N(NO_2)_2$], was newly synthesized from guanidine carbonate [$NH_2C(=NH)NH_2{\cdot}1/2H_2CO_3$]. Two different crystalline forms (${\alpha}-type$ and ${\beta}-type$) appeared according to the applied solvents and synthesis conditions. Moisture, during extraction, might become trapped in a crystal between inner molecules. Therefore, despite having the same chemical composition, Raman-IR and TGA-DSC revealed different physical characteristics of the two forms. Peaks of Raman shift near $1000cm^{-1}$ implied different chemical structures. Thermal analysis revealed an exothermic temperature $155.7^{\circ}C$ for ${\alpha}-type$ but one of $191.6^{\circ}C$ for ${\beta}-type$. The caloric value of ${\alpha}-type$ was 536.4 J/g, which was 2.5 times larger than that of the ${\beta}-type$, which was 1310 J/g. While the synthesized GDN of ${\alpha}-type$ showed a steep exothermic decomposition, the ${\beta}-type$ was slowly decomposed after melting through an endothermic process. This work implied that despite of the same molecular formula some different core thermal properties would appear depending on synthesis conditions.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Kyung Hee University

References

  1. S. Singh, P. Srivastava, G. Singh, J. Ind. Eng. Chem. 71 (2014) 128.
  2. W. Zhao, T. Zhang, L. Zhang, L. Yang, Z. Zhou, J. Ind. Eng. Chem. 38 (2016) 73. https://doi.org/10.1016/j.jiec.2016.04.005
  3. A.S. Gohardani, J. Stanojev, A. Demairée, K. Anflo, M. Persson, N. Wingborg, C. Nilsson, Prog. Aerosp. Sci. 71 (2014) 128. https://doi.org/10.1016/j.paerosci.2014.08.001
  4. A.P. Vandel, A.A. Lobanova, V.S. Loginova, Russ. J. Appl. Chem. 82 (2009) 1609.
  5. L. Jing, X. You, J. Huo, M. Zhu, Z. Yao, Aerosp. Sci. Technol. 69 (2017) 161. https://doi.org/10.1016/j.ast.2017.05.035
  6. W.R. Kim, Y.J. Kwon, Y.M. Jo, Y.C. Park, J. Energ. Mater. 35 (2017) 44. https://doi.org/10.1080/07370652.2016.1156193
  7. R. Martin, Green Propellants, PhD Dissertation, Royal Institute of Technology, Stockholm, Sweden, 2010.
  8. H.G. Jang, M.J. Sul, J.S. Shim, Y.C. Park, S.J. Cho, J. Ind. Eng. Chem. 63 (2018) 237. https://doi.org/10.1016/j.jiec.2018.02.020
  9. D.M. Badgujar, R.M. Wagh, S.J. Pawar, A.K. Sikder, Propellants Explos. Pyrotech. 39 (2014) 658. https://doi.org/10.1002/prep.201300098
  10. W.R. Kim, Y.J. Kwon, S.Y. Hwang, Y.M. Jo, Korean J. Chem. Eng. 34 (2017) 1693. https://doi.org/10.1007/s11814-017-0072-7
  11. L. Jing, X. You, J. Hou, M. Zhu, Z. Yao, Aerosp. Sci. Technol. 69 (2017) 161. https://doi.org/10.1016/j.ast.2017.05.035
  12. D.M. Badgujar, R.M. Wagh, S.J. Pawar, A.K. Sikder, Propellants Explos. Pyrotech. 39 (2014) 658. https://doi.org/10.1002/prep.201300098
  13. N. Latypov, A. Langlet, WO Patent 1999046202 A1 (1999).
  14. K. Sangwal, Additives and crystallization processes from fundamentals to applications, first ed., Wiley, Chichester, 2007.
  15. W.R. Kim, Y.J. Kwon, A.A. Adelodun, Y.M. Jo, J. Ind. Eng. Chem. 53 (2017) 411. https://doi.org/10.1016/j.jiec.2017.05.013
  16. A. Femandez, M.T. Mallade, J.L. Viesca, R. Gonzalez, R. Badia, A. Hemandez, J. Ind. Eng. Chem. 56 (2017) 292. https://doi.org/10.1016/j.jiec.2017.07.022
  17. J.P. Agrawal, High energy materials: propellants, explosives and pyrotechnics, first ed., Wiley, Weinheim, 2010.
  18. W.R. Kim, Y.J. Kwon, Y.M. Jo, Appl. Chem. Eng. 27 (2016) 397. https://doi.org/10.14478/ace.2016.1049
  19. C. Vorde, H. Shifs, US Patent 7981393 B2 (2011).
  20. J.E. House, Inorg. Nucl. Chem. Lett. 16 (1980) 185. https://doi.org/10.1016/0020-1650(80)80118-8
  21. W.R. Kim, Y.J. Kwon, Y.M. Jo, Korean Oil Chem. Soc. 31 (2014) 345. https://doi.org/10.12925/jkocs.2014.31.3.345
  22. S. Orimo, Y. Nakamori, T. Kato, C. Brown, C.M. Jensen, Appl. Phys. A 83 (2006) 5. https://doi.org/10.1007/s00339-005-3468-x
  23. I. Fuhr, Crystallization of the energetic oxidizer salt ammonium dinitramide: Theoretical and experimental considerations, PhD Dissertation, Martin-Luther-University, Halle-Witteneberg, 2008.
  24. X.K. Yang, K.Z. Xu, F.Q. Zhao, X. Yang, H. Wang, J.R. Song, Chem. Res. Chin. Univ. 25 (2009) 76.
  25. H. Ostmark, U. Bemm, A. Langlet, R. Sanden, N. Wingborg, J. Energ. Mater. 18 (2000) 123. https://doi.org/10.1080/07370650008216116
  26. J.S. Lee, H.S. Lee, J. Korean Inst. Eng. Chem. 18 (2017) 41.
  27. C.K. Kim, j. C. Yoo, B.S. Min, J. Korean Soc. Propul. Eng. 15 (2011) 29.
  28. Standard: NATO-STANAG 4489, Explosives, impact sensitivity tests, 1999.