DOI QR코드

DOI QR Code

Bulky carbon layer inlaid with nanoscale Fe2O3 as an excellent lithium-storage anode material

  • Nguyen, Thuy-An (Department of Chemical & Biological Engineering, Gachon University) ;
  • Lee, Sang-Wha (Department of Chemical & Biological Engineering, Gachon University)
  • 투고 : 2018.01.27
  • 심사 : 2018.07.26
  • 발행 : 2018.12.25

초록

Bulky carbon layer uniformly distributed with nanoscale $Fe_2O_3$ was prepared via a direct carbonation of $Fe^{3+}$-polyacrylonitrile complexes at $700^{\circ}C$ under $N_2$ flow. The iron oxide carbon composites exhibited an excellent cycling performance for lithium storage with a reversible capacity of ${\sim}810mAh\;g^{-1}$ after 250 cycles at a current rate of $100mA\;g^{-1}$. The enhancement was mainly attributed to dual functions of bulky carbon layer which facilitated the lithium-ion diffusion and accommodated the volume changes of active $Fe_2O_3$ during charge/discharge process. Our novel chemical strategy is quite effective for scalable fabrication of high capacity lithium-storage materials.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

참고문헌

  1. B. Wang, Z. Wen, J. Jin, X. Hong, S. Zhang, K. Rui, J. Power Sources 342 (2017) 521. https://doi.org/10.1016/j.jpowsour.2016.12.091
  2. X. Hu, G. Zeng, J. Chen, C. Lu, Z. Wen, J. Mater. Chem. A 5 (2017) 4535. https://doi.org/10.1039/C6TA10301D
  3. Y. Chen, Y. Hu, Z. Shen, R. Chen, X. He, X. Zhang, Y. Li, K. Wu, J. Power Sources 342 (2017) 467. https://doi.org/10.1016/j.jpowsour.2016.12.089
  4. S. Iqbal, S. Ahmad, J. Ind. Eng. Chem. 60 (2018) 53. https://doi.org/10.1016/j.jiec.2017.09.038
  5. Y. Zuo, G. Wang, J. Peng, G. Li, Y. Ma, F. Yu, B. Dai, X. Guo, C.-P. Wong, J. Mater. Chem. A 4 (2016) 2453. https://doi.org/10.1039/C5TA09742H
  6. P. Zeng, Y. Zhao, Y. Lin, X. Wang, J. Li, W. Wang, Z. Fang, Nanoscale Res. Lett. 12 (2017) 13. https://doi.org/10.1186/s11671-016-1783-0
  7. X. Zhu, X. Jiang, X. Chen, X. Liu, L. Xiao, Y. Cao, J. Alloys Compd. 711 (2017) 15. https://doi.org/10.1016/j.jallcom.2017.03.235
  8. B.-H. Kim, J.-H. Kim, J.-G. Kim, J.S. Im, C.W. Lee, S. Kim, J. Ind. Eng. Chem. 45 (2017) 99. https://doi.org/10.1016/j.jiec.2016.09.008
  9. S. Ko, C.W. Lee, J.S. Im, J. Ind. Eng. Chem. 36 (2016) 125. https://doi.org/10.1016/j.jiec.2016.01.036
  10. T. Jayaraman, A.P. Murthy, V. Elakkiya, S. Chandrasekaran, P. Nithyadharseni, Z. Khan, R.A. Senthil, R. Shanker, M. Raghavender, P. Kuppusami, M. Jagannathan, M. Ashokkumar, J. Ind. Eng. Chem. 64 (2018) 16. https://doi.org/10.1016/j.jiec.2018.02.029
  11. J.-H. Kim, M.-J. Jung, M.-J. Kim, Y.-S. Lee, J. Ind. Eng. Chem. 61 (2018) 368. https://doi.org/10.1016/j.jiec.2017.12.036
  12. W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan, Adv. Funct. Mater. 18 (2008) 3941. https://doi.org/10.1002/adfm.200801386
  13. Y. Piao, H.S. Kim, Y.E. Sung, T. Hyeon, Chem. Commun. 46 (2010) 118. https://doi.org/10.1039/B920037A
  14. T. Zhu, J.S. Chen, X.W. Lou, J. Phys. Chem. C 115 (2011) 9814. https://doi.org/10.1021/jp2013754
  15. H.-D. Oh, S.-W. Lee, S.-O. Kim, J.K. Lee, J. Power Sources 244 (2013) 575. https://doi.org/10.1016/j.jpowsour.2013.01.120
  16. K.W. Kim, J.S. Kim, S.W. Lee, J.K. Lee, Electrochim. Acta 170 (2015) 146. https://doi.org/10.1016/j.electacta.2015.04.132
  17. T.-A. Nguyen, I.T. Kim, S.-W. Lee, J. Am. Ceram. Soc. 99 (2016) 2720. https://doi.org/10.1111/jace.14286
  18. T.-A. Nguyen, S.-W. Lee, Electrochim. Acta 248 (2017) 37. https://doi.org/10.1016/j.electacta.2017.07.114
  19. J.S. Chen, Y. Zhang, X.W. Lou, ACS Appl. Mater. Interfaces 3 (2011) 3276. https://doi.org/10.1021/am201079z
  20. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Chem. Mater. 22 (2010) 5306. https://doi.org/10.1021/cm101532x
  21. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 1 (2012) 107.
  22. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano 7 (2013) 4459. https://doi.org/10.1021/nn401059h
  23. I.T. Kim, A. Magasinski, K. Jacob, G. Yushin, R. Tannenbaum, Carbon 52 (2013) 56. https://doi.org/10.1016/j.carbon.2012.09.004
  24. S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, Z. Lin, Adv. Energy Mater. 5 (2015) 1500400. https://doi.org/10.1002/aenm.201500400
  25. L. Zhao, M. Gao, W. Yue, Y. Jiang, Y. Wang, Y. Ren, F. Hu, ACS Appl. Mater. Interfaces 7 (2015) 9709. https://doi.org/10.1021/acsami.5b01503
  26. L. Zhang, H.B. Wu, X.W.D. Lou, Adv. Energy Mater. 4 (2014) 1300958. https://doi.org/10.1002/aenm.201300958
  27. L. Wang, Y. Yu, P.C. Chen, D.W. Zhang, C.H. Chen, J. Power Sources 183 (2008) 717. https://doi.org/10.1016/j.jpowsour.2008.05.079
  28. L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li, S. Zhang, B. Guo, Z. Lin, X. Zhang, ACS Appl. Mater. Interfaces 4 (2012) 2672. https://doi.org/10.1021/am300333s
  29. Z. Liu, S.W. Tay, Mater. Lett. 72 (2012) 74. https://doi.org/10.1016/j.matlet.2011.12.083
  30. J.S. Cho, Y.J. Hong, Y.C. Kang, ACS Nano 9 (2015) 4026. https://doi.org/10.1021/acsnano.5b00088
  31. Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P.C. Hsu, S. Chu, Y. Cui, Nano Lett. 15 (2015) 2910. https://doi.org/10.1021/nl5046318
  32. M. Keppeler, N. Shen, S. Nageswaran, M. Srinivasan, J. Mater. Chem. A 4 (2016) 18223. https://doi.org/10.1039/C6TA08456G
  33. X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, A. Hu, J. Nanomater. 2015 (2015) 1.
  34. T.-A. Nguyen, I.T. Kim, S.-W. Lee, B. Vyas, J. Am. Ceram. Soc. 99 (2016) 2720. https://doi.org/10.1111/jace.14286
  35. D. Wang, H. He, L. Han, R. Lin, J. Wang, Z. Wu, H. Liu, H.L. Xin, Nano Energy 20 (2016) 212. https://doi.org/10.1016/j.nanoen.2015.12.019
  36. I. Alarifi, A. Alharbi, W. Khan, A. Swindle, R. Asmatulu, Materials 8 (2015) 7017. https://doi.org/10.3390/ma8105356
  37. Q. Liu, L.B. Zhong, Q.B. Zhao, C. Frear, Y.M. Zheng, ACS Appl. Mater. Interfaces 7 (2015) 14573. https://doi.org/10.1021/acsami.5b04598
  38. S.-G. Kim, O.-K. Park, J.H. Lee, B.-C. Ku, Carbon Lett. 14 (2013) 247. https://doi.org/10.5714/CL.2013.14.4.247
  39. X.-M. Sui, S. Giordani, M. Prato, H.D. Wagner, Appl. Phys. Lett. 95 (2009) 233113. https://doi.org/10.1063/1.3272012
  40. W.C. Oh, F.J. Zhang, Asian J. Chem. 23 (2011) 875.
  41. Q.-l. Peng, H.-h. Zhou, Z.-h. Huang, J.-h. Chen, Y.-f. Kuang, J. Central South Univ. Technol. 17 (2010) 683. https://doi.org/10.1007/s11771-010-0540-2
  42. B.-s. Xu, C.-y. Zhang, Y.-z. Yang, X.-g. Liu, Q.-p. Luo, New Carbon Mater. 22 (2007) 193. https://doi.org/10.1016/S1872-5805(07)60016-X
  43. S.R. Dhakate, R.B. Mathur, O.P. Bahl, Carbon 35 (1997) 1753. https://doi.org/10.1016/S0008-6223(97)00134-6
  44. D. Li, L. Zhang, H. Chen, J. Wang, L.-X. Ding, S. Wang, P.J. Ashman, H. Wang, J. Mater. Chem. A 4 (2016) 8630. https://doi.org/10.1039/C6TA02139E
  45. M. Liu, H. Jin, E. Uchaker, Z. Xie, Y. Wang, G. Cao, S. Hou, J. Li, Nanotechnology 28 (2017) 155603. https://doi.org/10.1088/1361-6528/aa6143
  46. H.R. Du, C. Yuan, K.F. Huang, W.H. Wang, K. Zhang, B.Y. Geng, J. Mater. Chem. A 5 (2017) 5342. https://doi.org/10.1039/C6TA10327H
  47. T. Ma, Y. Xu, L. Sun, X. Liu, J. Zhang, Ceram. Int. 44 (2018) 364. https://doi.org/10.1016/j.ceramint.2017.09.182
  48. L. Jacob, K. Prasanna, M.R. Vengatesan, P. Santoshkumar, C.W. Lee, V. Mittal, J. Ind. Eng. Chem. 59 (2018) 108. https://doi.org/10.1016/j.jiec.2017.10.012
  49. J.-H. Choi, C.-W. Ha, H.-Y. Choi, S.-M. Lee, J. Ind. Eng. Chem. 60 (2018) 451. https://doi.org/10.1016/j.jiec.2017.11.032
  50. P. Rosaiah, J. Zhu, O.M. Hussain, Y. Qiu, Ceram. Int. (2017).
  51. B. Jin, F. Gao, Y.F. Zhu, X.Y. Lang, G.F. Han, W. Gao, Z. Wen, M. Zhao, J.C. Li, Q. Jiang, Sci. Rep. 6 (2016) 19317. https://doi.org/10.1038/srep19317
  52. M. Sethupathy, P. Pandey, P. Manisankar, J. Appl. Polym. Sci. 131 (2014).
  53. G. Sun, L. Sun, H. Xie, J. Liu, Nanomaterials (Basel) 6 (2016).

피인용 문헌

  1. Enhanced Electrochemical Performance of CNTs/α-Fe2O3/PPy Composite as Anode Material for Lithium Ion Batteries vol.78, pp.1, 2018, https://doi.org/10.1080/0371750x.2019.1583134
  2. Self-Assembled Few-Layered MoS 2 on SnO 2 Anode for Enhancing Lithium-Ion Storage vol.10, pp.12, 2020, https://doi.org/10.3390/nano10122558
  3. Fabricating nanostructured HoFeO3 perovskite for lithium-ion battery anodes via co-precipitation vol.207, pp.None, 2018, https://doi.org/10.1016/j.scriptamat.2021.114259