DOI QR코드

DOI QR Code

Immobilization of potassium copper hexacyanoferrate in doubly crosslinked magnetic polymer bead for highly effective Cs+ removal and facile recovery

  • Kim, Yun Kon (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Bae, Kyeonghui (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Yonghwan (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Harbottle, David (School of Chemical and Process Engineering, University of Leeds) ;
  • Lee, Jae W. (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2018.06.02
  • Accepted : 2018.07.23
  • Published : 2018.12.25

Abstract

A potassium copper hexacyanoferrate (KCuHCF) embedded magnetic hydrogel bead (HCF-Mbead) was synthesized via a facile double crosslinking methods of $Fe^{3+}$ ionic binding and freeze-thaw for effective $Cs^+$ removal. The HCF-Mbead had a hierarchical porous structure facilitating fast access of $Cs^+$ ions to embedded active sites. The adsorbent showed enhanced $Cs^+$ removal properties in terms of capacity (69.2 mg/g), selectivity ($K_d=4{\times}10^4mL/g$, 1 ppm $Cs^+$ in seawater) and stability (>99.5% removal in pH 3~11) with rapid magnetic separation. This study further opens the possibility to develop an efficient material that links the integration of adsorption and recovery.

Keywords

Acknowledgement

Supported by : NRF, Engineering and Physical Sciences Research Council

References

  1. T. Vincent, C. Vincent, Y. Barre, Y. Guari, G. Le Saout, E. Guibal, J. Mater. Chem. A 2 (2014) 10007. https://doi.org/10.1039/c4ta01128g
  2. X. Liu, G.R. Chen, D.J. Lee, T. Kawamoto, H. Tanaka, M.L. Chen, Y.K. Luo, Bioresour. Technol. 160 (2014) 142. https://doi.org/10.1016/j.biortech.2014.01.012
  3. H.J. Yang, H.Y. Li, J.L. Zhai, L. Sun, Y. Zhao, H.W. Yu, Chem. Eng. J. 246 (2014) 10. https://doi.org/10.1016/j.cej.2014.02.060
  4. H.J. Yang, L. Sun, J.L. Zhai, H.Y. Li, Y. Zhao, H.W. Yu, J. Mater. Chem. A 2 (2014) 326. https://doi.org/10.1039/C3TA13548A
  5. Y. Kim, Y.K. Kim, S. Kim, D. Harbottle, J.W. Lee, Chem. Eng. J. 313 (2017) 1042. https://doi.org/10.1016/j.cej.2016.10.136
  6. S.J. Datta, W.K. Moon, D.Y. Choi, I.C. Hwang, K.B. Yoon, Angew. Chem. Int. Ed. 53 (2014) 7203. https://doi.org/10.1002/anie.201402778
  7. C. Jeon, J. Ind. Eng. Chem. 40 (2016) 93. https://doi.org/10.1016/j.jiec.2016.06.010
  8. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environ. Sci. Technol. 50 (2016) 7290. https://doi.org/10.1021/acs.est.6b01897
  9. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Chem. Soc. Rev. 47 (2018) 2322. https://doi.org/10.1039/C7CS00543A
  10. P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, X. Wang, Environ. Pollut. 240 (2018) 493. https://doi.org/10.1016/j.envpol.2018.04.136
  11. Y.K. Kim, T. Kim, Y. Kim, D. Harbottle, J.W. Lee, J. Hazard. Mater. 340 (2017) 130. https://doi.org/10.1016/j.jhazmat.2017.06.066
  12. S. Baik, H. Zhang, Y.K. Kim, D. Harbottle, J.W. Lee, R.S.C Adv. 7 (2017) 54546.
  13. R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, J. Chen, R.S.C Adv 4 (2014) 37600.
  14. P.K. Sinha, P.K. Panicker, R.V. Amalraj, V. Krishnasamy, Waste Manage. 15 (1995) 149. https://doi.org/10.1016/0956-053X(95)00014-Q
  15. H.L. Chang, W.H. Shih, Ind. Eng. Chem. Res. 37 (1998) 71. https://doi.org/10.1021/ie970362o
  16. H.M. Liu, A. Yonezawa, K. Kumagai, M. Sano, T. Miyake, J. Mater. Chem. A 3 (2015) 1562. https://doi.org/10.1039/C4TA06170E
  17. B.R. Cherry, M. Nyman, T.M. Alam, J. Solid State Chem. 177 (2004) 2079. https://doi.org/10.1016/j.jssc.2004.02.020
  18. M.J. Manos, M.G. Kanatzidis, J. Am. Chem. Soc. 131 (2009) 6599. https://doi.org/10.1021/ja900977p
  19. J.L. Mertz, Z.H. Fard, C.D. Malliakas, M.J. Manos, M.G. Kanatzidis, Chem. Mater. 25 (2013) 2116. https://doi.org/10.1021/cm400699r
  20. S.B. Yang, N. Okada, M. Nagatsu, J. Hazard. Mater. 301 (2016) 8. https://doi.org/10.1016/j.jhazmat.2015.08.033
  21. S.B. Yang, C. Han, X.K. Wang, M. Nagatsu, J. Hazard. Mater. 274 (2014) 46. https://doi.org/10.1016/j.jhazmat.2014.04.001
  22. Y. Kim, Y.K. Kim, J.H. Kim, M.-S. Yim, D. Harbottle, J.W. Lee, Appl. Surf. Sci. 450 (2018) 404. https://doi.org/10.1016/j.apsusc.2018.04.181
  23. R. Turgis, G. Arrachart, C. Delchet, C. Rey, Y. Barre, S. Pellet-Rostaing, Y. Guari, J. Larionova, A. Grandjean, Chem. Mater. 25 (2013) 4447. https://doi.org/10.1021/cm4029935
  24. H.-M. Yang, S.-C. Jang, S.B. Hong, K.-W. Lee, C. Roh, Y.S. Huh, B.-K. Seo, J. Alloys Compd. 657 (2016) 387. https://doi.org/10.1016/j.jallcom.2015.10.068
  25. A.A. Kadam, J. Jang, D.S. Lee, Bioresour. Technol. 216 (2016) 391. https://doi.org/10.1016/j.biortech.2016.05.103
  26. Y. Kim, I. Kim, T.S. Lee, E. Lee, K.J. Lee, J. Ind. Eng. Chem. 60 (2018) 465. https://doi.org/10.1016/j.jiec.2017.11.034
  27. R.Z. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, M. Kurihara, M. Ishizaki, M. Watanabe, M. Arisaka, T. Nankawa, ACS Appl. Mater. Interfaces 5 (2013) 12984. https://doi.org/10.1021/am403748b
  28. C.D. Wessells, R.A. Huggins, Y. Cui, Nat. Commun. 2 (2011).
  29. T. Vincent, C. Vincent, E. Guibal, Molecules 20 (2015) 20582. https://doi.org/10.3390/molecules201119718
  30. J. Causse, A. Tokarev, J. Ravaux, M. Moloney, Y. Barre, A. Grandjean, J. Mater. Chem. A 2 (2014) 9461. https://doi.org/10.1039/C4TA01266F
  31. C. Dwivedi, S.K. Pathak, M. Kumar, S.C. Tripathi, P.N. Bajaj, Environ. Sci.: Wat. Res. Technol. 1 (2015) 153. https://doi.org/10.1039/C4EW00021H
  32. J. Jang, D.S. Lee, Bioresou. Technol. 218 (2016) 294. https://doi.org/10.1016/j.biortech.2016.06.100
  33. Y.-C. Lai, Y.-R. Chang, M.-L. Chen, Y.-K. Lo, J.-Y. Lai, D.-J. Lee, Bioresour. Technol. 214 (2016) 192. https://doi.org/10.1016/j.biortech.2016.04.096
  34. J. Qian, J. Ma, W. He, D. Hua, Chem. Asian J. 10 (2015) 1738. https://doi.org/10.1002/asia.201500350
  35. Y.K. Kim, Y. Kim, S. Kim, D. Harbottle, J.W. Lee, J. Environ. Chem. Eng. 5 (2017) 975. https://doi.org/10.1016/j.jece.2017.01.026
  36. H. Qu, D. Caruntu, H. Liu, C.J. O'Connor, Langmuir 27 (2011) 2271. https://doi.org/10.1021/la104471r
  37. Y. Mun, C. Jo, T. Hyeon, J. Lee, K.-S. Ha, K.-W. Jun, S.-H. Lee, S.-W. Hong, H.I. Lee, S. Yoon, J. Lee, Carbon 64 (2013) 391. https://doi.org/10.1016/j.carbon.2013.07.092
  38. Y.K. Kim, J.H. Park, J.W. Lee, Carbon 126 (2018) 215. https://doi.org/10.1016/j.carbon.2017.10.020
  39. A. Takahashi, N. Minami, H. Tanaka, K. Sue, K. Minami, D. Parajuli, K.M. Lee, S.I. Ohkoshi, M. Kurihara, T. Kawamoto, Green Chem. 17 (2015) 4228. https://doi.org/10.1039/C5GC00757G
  40. M. Yi, J.W. Lee, Korean J. Chem. Eng. 33 (2016) 3401. https://doi.org/10.1007/s11814-016-0215-2
  41. C. Dwivedi, A. Kumar, K.K. Singh, A.K. Juby, M. Kumar, P.K. Wattal, P.N. Bajaj, J. Appl. Polym. Sci. 129 (2013) 152. https://doi.org/10.1002/app.38707
  42. C. Demitri, R.D. Sole, F. Scalera, A. Sannino, G. Vasapollo, A. Maffezzoli, L. Ambrosio, L. Nicolais, J. Appl. Polym. Sci. 110 (2008) 2453. https://doi.org/10.1002/app.28660
  43. M.G. Raucci, M.A. Alvarez-Perez, C. Demitri, D. Giugliano, V.D. Benedictis, A. Sannino, L. Ambrosio, J. Biomed. Mater. Res. A 103 (2015) 2045. https://doi.org/10.1002/jbm.a.35343
  44. H.V. Tran, L.D. Tran, T.N. Nguyen, Mater. Sci. Eng. C 30 (2010) 304. https://doi.org/10.1016/j.msec.2009.11.008
  45. C. Loos-Neskovic, S. Ayrault, V. Badillo, B. Jimenez, E. Garnier, M. Fedoroff, D.J. Jones, B. Merinov, J. Solid State Chem. 177 (2004) 1817. https://doi.org/10.1016/j.jssc.2004.01.018
  46. W. Plazinski, W. Rudzinski, A. Plazinska, Adv. Colloid Interface Sci.152 (2009) 2. https://doi.org/10.1016/j.cis.2009.07.009
  47. R.Z. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H.T. Na, M. Kurihara, M. Watanabe, M. Arisaka, T. Nankawa, Electrochim. Acta 87 (2013) 119. https://doi.org/10.1016/j.electacta.2012.08.124

Cited by

  1. Amino-functionalized magnetic chitosan beads to enhance immobilization of potassium copper hexacyanoferrate for selective Cs+ removal and facile recovery vol.9, pp.2, 2018, https://doi.org/10.1039/c8ra09386e
  2. Alginate-enfolded copper hexacyanoferrate graphene oxide granules for adsorption of low-concentration cesium ions from aquatic environment vol.320, pp.3, 2018, https://doi.org/10.1007/s10967-019-06511-y
  3. Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions vol.26, pp.17, 2018, https://doi.org/10.1007/s10570-019-02687-4
  4. Recovery of Pt(IV) from aqueous solutions by spent brewer's yeast‐functionalized zeolite (SBYFZ): A batch and column study vol.40, pp.1, 2021, https://doi.org/10.1002/ep.13481
  5. Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework vol.286, pp.p3, 2018, https://doi.org/10.1016/j.chemosphere.2021.131853