DOI QR코드

DOI QR Code

Supramolecular aminocatalysis via inclusion complex: Amino-doped β-cyclodextrin as an efficient supramolecular catalyst for the synthesis of chromeno pyrimido[1,2-b]indazol in water

  • Shinde, Vijay Vilas (Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University) ;
  • Jeong, Daham (Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University) ;
  • Jung, Seunho (Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University)
  • Received : 2018.05.08
  • Accepted : 2018.08.21
  • Published : 2018.12.25

Abstract

Well-modified amino-appended ${\beta}$-cyclodextrin ($AA-{\beta}-CD$) with an amino group at the primary face of the ${\beta}-CD$ was synthesized and used in the catalytic synthesis of chromeno pyrimido[1,2-b]indazol as supramolecular catalysts in water for the first time. $AA-{\beta}-CD$ was characterized by FT-IR, NMR, MALDI-TOF mass spectrometry, and SEM analysis. A possible reaction mechanism featuring molecular complexation was suggested based on 2D NMR (ROESY) spectroscopy, FE-SEM, DSC, and FT-IR. Advantages such as operational simplicity, recyclability of the catalysts, and accessibility in aqueous medium render this protocol eco-friendly.

Keywords

Acknowledgement

Supported by : Konkuk University, National Research Foundation of Korea (NRF)

References

  1. (a) M. Thangadurai, S. Minu, S. Wakode, Med. Chem. Res. 21 (2012) 1509 https://doi.org/10.1007/s00044-011-9631-3
  2. M.C. Venuti, R. Jones, J.J. Bruno, J. Med. Chem. 30 (1987) 303. https://doi.org/10.1021/jm00385a012
  3. T. Yakaiah, B.P.V. Lingaiah, B. Narsaiah, K.P. Kumar, U.S.N. Murthy, Eur. J. Med. Chem. 43 (2008) 341. https://doi.org/10.1016/j.ejmech.2007.03.031
  4. R.D. Amici, A.K.M. Matteo, S.B.A. Vetti, PCT Int. Appl. WO 0328, 720 (2003) 132 pp. (Eng) (C.A.138: 304278t).
  5. N. Conception, M. Patrick, F. Thompson, M.T. Fabienne, B. Eric, W. Sylvie, C. Cecile, PCT Int. Appl. WO 0311, 833 (2003) 188 pp. (Fr) (C.A. 138: 153529x).
  6. M. Pedro, A. Antonio, V. Maria, V. Vinader, Tetrahedron Lett. 30 (1989) 6237. https://doi.org/10.1016/S0040-4039(01)93353-2
  7. (a) R.J. Griffin, P.R. Lowe, J. Chem. Soc. Perkin Trans. 1 (1992) 1811
  8. (b) B.J. Whilock, S.H. Lipton, F.M. Strong, J. Org. Chem. (1965) 115.
  9. N. Conception, M. Patrick, F. Thompson, M.T. Fabienne, B. Eric, W. Sylvie, C. Cecile, PCT Int. Appl. WO 0311, 833 (2003) 188 pp. (Fr) (C.A. 138: 153529x).
  10. (a) T. Yakaiah, C. Kurumurthy, B.P.V. Lingaiah, B. Narsaiah, R. Pamanji, L.R. Velatooru, J.V. Rao, S. Gururaj, T. Parthasarathy, B. Sridhar, Med. Chem. Res. 21 (2012) 4261 https://doi.org/10.1007/s00044-011-9962-0
  11. (b) D. Matraie, G. Venkat Reddy, V.V.V.N.S. Ramarao, S.B. Ravikanth Narsaiah, P. S. Rao, K. Ravikumar, B. Sridhar, Tetrahedron 16 (2005) 3999
  12. (c) S. Ravi Kanth, G. Venkat Reddy, K.P. Hara Kishore, S. Rao, B. Narsaiah, U.S.N. Murthy, Eur. J. Med. Chem. 41 (2006) 1011 https://doi.org/10.1016/j.ejmech.2006.03.028
  13. (d) P.V.S. Salvatore, L.M. Marino, J. Heteroatom Chem. 10 (1973) 261 https://doi.org/10.1002/jhet.5570100229
  14. (e) R. Hans, M.A. Peiren, M. Roert, Chem. Ber. 105 (1972) 794 https://doi.org/10.1002/cber.19721050308
  15. (f) L. Li, H. Xu, L. Dai, J. Xi, L. Gao, L. Rong, Tetrahedron 73 (2017) 5358 https://doi.org/10.1016/j.tet.2017.07.035
  16. (g) G. Rahimzadeh, S. Bahadorikhalili, E. Kianmehr, M. Mahdavi, Mol. Divers. 21 (2017) 597 https://doi.org/10.1007/s11030-017-9746-7
  17. (h) A.M. Jadhav, S.G. Balwe, K.T. Lim, Y.T. Jeong, Tetrahedron 73 (2017) 2806. https://doi.org/10.1016/j.tet.2017.03.084
  18. (a) V.V. Shinde, Y.S. Jeong, Y.T. Jeong, Mol. Divers 19 (2015) 367 https://doi.org/10.1007/s11030-015-9579-1
  19. (b) H.Y. Wang, X.C. Liu, X. Feng, Z.B. Huang, D.Q. Shi, Green Chem. 15 (2013) 3307 https://doi.org/10.1039/c3gc41799a
  20. (c) J.D. Hu, C.P. Cao, W. Lin, M.H. Hu, Z.B. Huang, D.Q. Shi, J. Org. Chem. 79 (2014) 7935. https://doi.org/10.1021/jo501049m
  21. (a) M. Lu, D. Zhu, Y. Lu, B. Hou, B. Tan, G. Zhong, Angew. Chem. Int. Ed. 47 (2008) 10187 https://doi.org/10.1002/anie.200803731
  22. (b) J.W. Yang, H.M.T. Fonseca, B. List, J. Am. Chem. Soc. 127 (2005) 15036 https://doi.org/10.1021/ja055735o
  23. (c) V.V. Shinde, Y.T. Jeong, Tetrahedron 72 (2016) 4377. https://doi.org/10.1016/j.tet.2016.06.002
  24. M. Raynal, P. Ballester, A. Vidal-Ferran, P.W. van Leeuwen, Chem. Soc. Rev. 43 (2014) 1734. https://doi.org/10.1039/C3CS60037H
  25. D. French, Adv. Carbohydr. Chem. 12 (1957) 189.
  26. J. Szeitli, Cyclodextrin Technology, Klwner Academic Publication, Doedracht, 1988.
  27. J. Zhang, P.X. Ma, Adv. Drug Deliv. Rev. 65 (2013) 1215. https://doi.org/10.1016/j.addr.2013.05.001
  28. K. Kuppusamy, S. Palaniswamy, P. Kasi, Org. Lett. 12 (2010) 18.
  29. K. Kuppusamy, S. Palaniswamy, P. Kasi, J. Org. Chem. 78 (2013) 744. https://doi.org/10.1021/jo302173a
  30. H. Shen, H. Ji, Carbohydr. Res. 49 (2012) 354.
  31. S. Palaniswamy, P. Kasi, J. Org. Chem. 73 (2008) 9121. https://doi.org/10.1021/jo801811w
  32. V.V. Shinde, D. Jeong, S.W. Joo, E. Cho, S. Jung, Catal. Commun. 103 (2018) 83. https://doi.org/10.1016/j.catcom.2017.10.001
  33. I.A. Azath, P. Puthiaraj, K. Pitchumani, ACS Sustain. Chem. Eng. 1 (2013) 174. https://doi.org/10.1021/sc3000866
  34. Y. Ren, B. Yang, X. Liao, Catal. Sci. Technol. 6 (2016) 4283. https://doi.org/10.1039/C5CY01888A
  35. H.S. Byun, N. Zhong, R. Bittman, Organic Synth. 77 (2000) 225. https://doi.org/10.15227/orgsyn.077.0225
  36. R. Patel, M. Patel, Drug Discov. Ther. 4 (2010) 442.
  37. D.R. de Araujo, S.S. Tsuneda, C.M.S. Cereda, G.F.F. Del, P.S.C. Preté, S.A. Fernandes, E. de Paula, Eur. J. Pharm. Sci. 33 (2008) 60. https://doi.org/10.1016/j.ejps.2007.09.010
  38. A. Kamphorst, I.M. de Sa, A. Faria, R. Sinisterra, Eur. J. Pharm. Biopharm. 57 (2004) 199. https://doi.org/10.1016/j.ejpb.2003.10.019

Cited by

  1. Oxidative Rearrangement of 3-Aminoindazoles for the Construction of 1,2,3-Benzotriazine-4(3H)-ones at Ambient Temperature vol.20, pp.20, 2018, https://doi.org/10.1021/acs.orglett.8b02813
  2. New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives vol.4, pp.24, 2019, https://doi.org/10.1021/acsomega.9b02755
  3. Utilization of Water-Soluble Aminoethylamino–β–Cyclodextrin in the Pfitzinger Reaction—Catalyzed to the Synthesis of Diversely Functionalized Quinaldine vol.12, pp.2, 2018, https://doi.org/10.3390/polym12020393
  4. PtNPs-GNPs-MWCNTs-β-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid vol.412, pp.11, 2020, https://doi.org/10.1007/s00216-020-02488-w
  5. Ultrasonication-Assisted Synthesis of a D-Glucosamine-Based β-CD Inclusion Complex and Its Application as an Aqueous Heterogeneous Organocatalytic System vol.85, pp.15, 2018, https://doi.org/10.1021/acs.joc.0c00420
  6. Boronate affinity-modified magnetic β-cyclodextrin polymer for selective separation and adsorption of shikimic acid vol.56, pp.23, 2018, https://doi.org/10.1007/s10853-021-06126-3