DOI QR코드

DOI QR Code

Changes in the Standardized Uptake Value According to the Type of Metal of Dental Prosthesis in PET-CT Fusion Image

PET-CT 융합 영상에서 치과보철물의 금속 종류에 따른 표준섭취계수 값의 변화

  • Han, Sang-Hyun (Department of Radiological Science, Hanseo University)
  • 한상현 (한서대학교 방사선학과)
  • Received : 2018.06.25
  • Accepted : 2018.09.20
  • Published : 2018.09.28

Abstract

In this study, HU(hounsfield unit) value of CT generated by dental prosthesis was measured according to the type of metal when PET-CT was performed, and the degree of distortion and standard deviation of SUV(standard uptake value) and to propose a method to reduce errors in image reading. PET-CT was performed using actual teeth, metal crown, gold crown, titanium, and zirconia dental prosthesis. Compared with general teeth, the SUV value increased with increasing HU value. The SUV value of metal crown, titanium, and zirconia was increased by 37% and the gold crown increased by 45.4%. In addition, image distortions were small in general teeth, metal crown, titanium, and zirconia, but hard curing of the gold crown occurred and image distortion occurred. Therefore, since the metal type of the dental prosthesis affects the SUV value, the NAC(non attenuation correction) PET image of the dental prosthesis can be helpful in the diagnosis of the patient using the gold material.

본 연구는 PET-CT 검사를 시행할 때 치과보철물에 의해 발생되는 CT의 HU(Hounsfield Unit) 값을 금속의 종류에 따라 측정하고, PET 영상의 왜곡정도와 표준섭취계수(SUV)의 변화를 확인하여 영상 판독 시 오류의 감소방안을 제시하고자 하였다. 실험방법은 실제 치아와 메탈 크라운, 골드크라운, 티타늄, 지르코니아의 치과보철물을 이용하여 PET-CT 검사를 실시하였다. 일반 치아와 비교한 결과 HU 값이 증가함에 따라 SUV 값이 증가되는 것을 확인하였고, 메탈 크라운, 티타늄, 지르코니아의 SUV 값은 37% 정도 증가되었고, 골드 크라운에서는 45.4%로 가장 많이 증가했다. 그리고 일반치아, 메탈크라운, 티타늄, 지르코니아에서 영상 왜곡은 미미했지만, 골드 크라운에서는 선속경화현상이 심하게 발생하였고, 영상 왜곡이 나타났다. 따라서 치과보철물의 금속종류는 SUV 값에 영향을 미치기 때문에 치과 보철물 중에서 골드 재질을 사용한 환자를 진단할 때에는 영상 판독 시 보정된 PET 영상보다는 NAC(무보정) PET 영상을 확인한다면 판독에 도움을 줄 수 있을 것으로 생각된다.

Keywords

References

  1. Y. G. Kang. et al. (2015), Textbook of Nuclear Medicine, Seoul : Chunggu Publisher.
  2. Y. G. Bahn, et al, (2010), Evaluation of Artifacts by Dental Metal Prosthese and Implants on PET/CT Images: Phantom and Clinical Studies, J Nucl Med Technol, 14, 2, 110-116.
  3. Cohade C, Osman M, Nakamoto Y, Marshall L, Links J, Fishman E, Wahl R, (2003), Initial Experience with Oral Countrast in PET/CT: Phantom and Clinical Studies, Joural of Nucl Med, 44, 412-416.
  4. Heiko Schoder, Henry W. D. Yeung, Mitthat Gonen, Dennis Kraus, Steven M. Larson. (2004), Head and Neck Cancer: Clinical Usefulness and Accuracy of PET/CT Image Fusion, Radiology, 231, 65-72. https://doi.org/10.1148/radiol.2311030271
  5. J. F. Barrett, N Keat, (2004), Artifacts in CT: recognition and avoidance, Radiographics, 24, 6, 1679-1691. https://doi.org/10.1148/rg.246045065
  6. D. B. Song, S. C. Kim, H. H. Lee, (2015), Internal Fit of dental CAD/CAM titanium prosthesis after continuos milling, J. Korea Research Society for Dental Materials, 42, S, 13-14.
  7. S. M. Kim et al, (2014), Precipitation hardening associated with post-firing heat treatment after simulated firing of an Au-Pt-Pd metal-ceramic alloy, J. Korea Research Society for Dental Materials, 41, 3, 171-177. https://doi.org/10.14815/kjdm.2014.41.3.171
  8. Nuyts J, Stroobants S, (2005), Reduction of attenuation correction artifacts in PET-CT, Conf Rec of the 2005 IEEE Nuc Sci Symp, 4, 1895-1899.
  9. K. J. Kim, G. J. Kim, S. J. Yoo, J. H. Kim, (2016), The Study of Decrease Artifact when Scanning Head and Neck PET/CT(Drease Radiation Dose Patient), J. Korea Saf Manag. Sci, 18, 153-158.
  10. Oliver Watzke Willi A, Kalender, (2004), A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images, Eur Radiol, 14, 849-856. https://doi.org/10.1007/s00330-004-2263-y
  11. Goerres, G. W. Ziegler, S. I. Gurger C, et al, (2003), Artifacts at PET and PET/CT acused by metalic hip prosthetic material, Radiology, 226, 557-584.
  12. C. Cyteval, V. Hamm, MP. Sarrabere, FM. Lopez, P. Taourel, (2002), Painful infection at the site of hip prosthesis CT imaging, Radiology, 224, 477-483. https://doi.org/10.1148/radiol.2242010989
  13. Ay M, Zaidi H. (2006), Computed Tomography-based attenuation correction in neurological positron emission tomography: evaluation of the effect of x-ray tube voltage on quantitative analysis, Nucl Med Commun, 27, 339-346. https://doi.org/10.1097/01.mnm.0000203631.23407.23
  14. C. S. Ko, (2008), Nuclear medicine, 81-249.
  15. Beyer, T. Antoch, G. Meller, S. rt al, (2004), Acqusition protocol considerations for combined PET/CT imaging, J Nucl Med, 45, 25-35.