DOI QR코드

DOI QR Code

Extracellular Polymeric Substances of Pseudomonas chlororaphis O6 Induce Systemic Drought Tolerance in Plants

  • Cho, Song Mi (Department of Floriculture, Chunnam Techno University) ;
  • Anderson, Anne J. (Department of Biological Engineering, Utah State University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Department of Plant Biotechnology, Chonnam National University)
  • 투고 : 2018.08.13
  • 심사 : 2018.08.20
  • 발행 : 2018.09.30

초록

Pseudomonas chlororaphis O6 induces systemic tolerance in plants against drought stress. A volatile, 2R, 3R-butanediol, produced by the bacterium causes partial stomatal closure, thus, limiting water loss from the plant. In this study, we report that applications of extracellular polymeric substances (EPS) from P. chlororaphis O6 to epidermal peels of leaves of Arabidopsis thaliana also reduce the size of stomatal openings. Growth of A. thaliana seedlings with applications of the EPS from P. chlororaphis O6 reduced the extent of wilting when water was withheld from the plants. Fluorescence measurements showed photosystem II was protected in the A. thaliana leaves in the water stressed EPS-exposed plants. These findings indicate that P. chlororaphis O6 has redundancy in traits associated with induction of mechanisms to limit water stress in plants.

키워드

참고문헌

  1. Anderson, A. J. and Kim, Y. C. 2018. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Prot. 105: 62-69. https://doi.org/10.1016/j.cropro.2017.11.009
  2. Aslam, S. N., Newman, M. A., Erbs, G., Morrissey, K. L., Chinchilla, D., Boller, T. et al. 2008. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr. Biol. 18: 1078-1083. https://doi.org/10.1016/j.cub.2008.06.061
  3. Bae, H., Kim, S. H., Kim, M. S., Sicher, R. C., Lary, D., Strem, M. D. et al. 2008. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol. Biochem. 46: 174-188. https://doi.org/10.1016/j.plaphy.2007.10.014
  4. Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., Berendsen, R. L. and Pieterse, C. M. J. 2013. Induced systemic resistance and the rhizosphere microbiome. Plant Pathol. J. 29: 136-143. https://doi.org/10.5423/PPJ.SI.07.2012.0111
  5. Bonebrake, M., Anderson, K., Valiente, J., Jacobson, A., McLean, J. E. Anderson, A. et al. 2018. Biofilms benefiting plants exposed to ZnO and CuO nanoparticles studied with a root-mimetic hollow fiber membrane. J. Agric. Food Chem. 66: 6619-6627. https://doi.org/10.1021/acs.jafc.7b02524
  6. Cheng, X., Etalo, D. W., van de Mortel, J. E., Dekkers, E., Nguyen, L., Medema, M. H. et al. 2017. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environ. Microbiol. 19: 4638-4656. https://doi.org/10.1111/1462-2920.13927
  7. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H. et al. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21: 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  8. Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28: 202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
  9. Cho, S. M., Kang, B. R. and Kim, Y. C. 2013. Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol. J. 29: 209-220. https://doi.org/10.5423/PPJ.SI.07.2012.0103
  10. Creelman, R. A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonate in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355-381. https://doi.org/10.1146/annurev.arplant.48.1.355
  11. Evans, N. H. 2003. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 131: 8-11. https://doi.org/10.1104/pp.014266
  12. Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C. et al. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7: 463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
  13. Hung, C.-C., Santschi, P. H. and Gillow, J. B. 2005. Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. Carbohydr. Polym. 61: 141-147. https://doi.org/10.1016/j.carbpol.2005.04.008
  14. Jiang, C.-H., Fan, Z.-H., Xie, P. and Guo, J.-H. 2016. Bacillus cereus AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to Pst DC3000 in Arabidopsis. Front. Microbiol. 7: 664.
  15. Kim, H. J., Nam, H. S., Anderson, A. J., Yang, K. Y., Cho, B. H. and Kim, Y. C. 2007. Mutation in the edd gene encoding the 6-phosphogluconate dehydratase of Pseudomonas chlororaphis O6 impairs root colonization and is correlated with reduced induction of systemic resistance. Lett. Appl. Microbiol. 44: 56-61. https://doi.org/10.1111/j.1472-765X.2006.02029.x
  16. Kim, Y. C., Leveau, J., McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C. M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77: 1548-1555. https://doi.org/10.1128/AEM.01867-10
  17. Kim, Y. C., Glick, B. R., Bashan, Y. and Ryu, C. M. 2012. Enhancement of Plant Drought Tolerance by Microbes. In: Plant Responses to Drought Stress, ed. by R. Aroca, pp. 383-413. Springer, Berlin, Germany.
  18. Kim, Y. C. and Anderson, A. J. 2018. Rhizosphere pseudomonads as probiotics improving plant health. Mol. Plant Pathol. doi:10.1111/mpp.12693.
  19. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 199-222. https://doi.org/10.1146/annurev.arplant.49.1.199
  20. Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42: 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
  21. Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S. Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980. https://doi.org/10.1016/j.cell.2006.06.054
  22. Ortmann, I., Conrath, U. and Moerschbacher, B. M. 2006. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Lett. 580: 4491-4494. https://doi.org/10.1016/j.febslet.2006.07.025
  23. Park, K., Kloepper, J. W. and Ryu, C. M. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18: 1095-1100.
  24. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. https://doi.org/10.1104/pp.103.026583
  25. Sandhya, V., Ali, S. Z., Grover, M., Reddy, G. and Venkateswarlu, B. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fert. Soils 46: 17-26. https://doi.org/10.1007/s00374-009-0401-z
  26. Santaella, C., Schue, M., Berge, O., Heulin, T. and Achouak, W. 2008. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ. Microbiol. 10: 2150-2163. https://doi.org/10.1111/j.1462-2920.2008.01650.x
  27. Schroeder, J. I., Kwak, J. M. and Allen, G. J. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410: 327-330. https://doi.org/10.1038/35066500
  28. Shukla, N., Awasthi, R. P., Rawat, L. and Kumar, J. 2015. Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann. Appl. Biol. 166: 171-182. https://doi.org/10.1111/aab.12160
  29. Suhita, D., Raghavendra, A. S., Kwak, J. M. and Vavasseur, A. 2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134: 1536-1545. https://doi.org/10.1104/pp.103.032250
  30. Timmusk, S. and Wagner, E. G. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12: 951-959. https://doi.org/10.1094/MPMI.1999.12.11.951
  31. Underwood, W., Melotto, M. and He, S. Y. 2007. Role of plant stomata in bacterial invasion. Cell. Microbiol. 9: 1621-1629. https://doi.org/10.1111/j.1462-5822.2007.00938.x
  32. Wingender, J., Neu, T. R. and Flemming, H.-C. 1999. What are bacterial extracellular polymeric substances? In: Microbial Extracellular Polymeric Substances, eds. by J. Wingender, T. R. Neu and H.-C. Flemming, pp. 1-19. Springer, Berlin, Germany.
  33. Woo, N. S., Badger, M. R. and Pogson, B. J. 2008. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4: 27. https://doi.org/10.1186/1746-4811-4-27
  34. Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
  35. Yang, K.-Y., Doxey, S., McLean, J. E., Britt, D., Watson, A., Al Qassy, D. et al. 2017. Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany 96: 175-186.
  36. Zhang, H., Murzello, C., Sun, Y., Kim, M. S., Xie, X., Jeter, R. M. et al. 2010. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol. Plant Microbe Interact. 23: 1097-1104. https://doi.org/10.1094/MPMI-23-8-1097
  37. Zhu, J. K. 2001. Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401-406. https://doi.org/10.1016/S1369-5266(00)00192-8