DOI QR코드

DOI QR Code

Development of an Efficient Bioassay Method for Testing Resistance to Bacterial Soft Rot of Radish

효과적인 무 무름병 저항성 검정법 개발

  • Lee, Soo Min (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung Soo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Hun (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Lee, Seon-Woo (Department of Applied Bioscience, Dong-A University) ;
  • Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
  • 이수민 (한국화학연구원 친환경신물질연구센터) ;
  • 최용호 (한국화학연구원 친환경신물질연구센터) ;
  • 장경수 (한국화학연구원 친환경신물질연구센터) ;
  • 김헌 (한국화학연구원 친환경신물질연구센터) ;
  • 이선우 (동아대학교 응용생물공학과) ;
  • 최경자 (한국화학연구원 친환경신물질연구센터)
  • Received : 2018.08.02
  • Accepted : 2018.08.22
  • Published : 2018.09.30

Abstract

Pectobacterium carotovorum subsp. carotovorum (Pcc) causes bacterial soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates. This study was conducted to establish an efficient screening method for resistant cultivars of radish (Raphanus sativus) to bacterial soft rot. Resistance degrees of 60 commercial radish cultivars to the Pcc KACC 10421 isolate were investigated. For further study, six radish cultivars (Awooriwoldong, YR Championyeolmu, Jeonmuhumu, Bitgoeunyeolmu, Sunbongaltari, Housecheongok) showing different level of resistance to the bacterium were selected. The development of bacterial soft rot on the cultivars was tested according to several conditions such as incubation temperature, seedling stage of radish, inoculum concentration to develop the disease. On the basis of the results, we suggest that an efficient screening method for resistant radish to Pcc is to inoculate twenty-day-old seedlings with a bacterial suspension of Pcc at a concentration of $8{\times}10^5cfu/ml$ and then to cultivate the plants in a growth room at $25^{\circ}C$ and 80% RH with 12-hour light per day.

Pactobacterium carotovorum subsp. carotovorum (Pcc)에 의한 무름병은 전세계적으로 문제가 되고 있고 특히 온난 다습한 지역에서 문제가 심각하다. 본 연구는 Pcc에 의해 발생하는 무 무름병에 대한 효율적인 저항성 검정법을 확립하기 위하여 수행되었다. 시판 무 품종 60개의 Pcc에 대한 저항성 정도를 조사하고, 추후 실험을 위해 저항성에 차이를 보이는 6개 품종을 선발하였다. 이들 6개 품종의 접종하는 무의 생육 시기, 접종원 농도, 접종 후 재배 온도 등의 발병 조건에 따른 무름병 발생을 조사하였다. 이들 실험의 결과로부터 무의 무름병에 대한 저항성을 검정하기 위해서는, 무 종자를 파종하고 온실($25^{\circ}C{\pm}5^{\circ}C$)에서 20일 동안 재배한 유묘에 Pcc 균주의 세균현탁액($8{\times}10^5cfu/ml$)을 분무하여 접종하고, 접종한 식물은 $25^{\circ}C$ 습실상에 24시간 동안 배양한 후에 $25^{\circ}C$, 상대습도 80%의 생육상으로 이동하여 재배하는 것을 제안하고자 한다.

Keywords

References

  1. Aleck, J. R. and Harrison, M. D. 1978. The influence of inoculum density and environment on the development of potato blackleg. Am. J. Potato Res. 55: 479-494. https://doi.org/10.1007/BF02852154
  2. Barksdale, T. H., Papavizas, G. C. and Johnston, S. A. 1984. Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Dis. 68: 506-509. https://doi.org/10.1094/PD-68-506
  3. Chung, E. K., Zhang, X. Z., Choi, B. R., Lee, E. J., Yeoung, Y. R. and Kim, B. S. 2003. Screening of disease resistance of Chinese cabbage cultivars and lines to bacterial soft rot. Res. Plant Dis. 9: 39-41. (In Korean) https://doi.org/10.5423/RPD.2003.9.1.039
  4. Collmer, A. and Keen, N. T. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24: 383-409. https://doi.org/10.1146/annurev.py.24.090186.002123
  5. De Boer, S. H. and Kelman, A. 1978. Influence of oxygen concentration and storage factors on susceptibility of potato tubers to bacterial soft rot (Erwinia carotovora). Potato Res. 21: 65-79. https://doi.org/10.1007/BF02362262
  6. Doullah, M. A. U., Meah, M. B. and Okazaki, K. 2006. Development of an effective screening method for partial resistance to Alternaria brassicicola (dark leaf spot) in Brassica rapa. Eur. J. Plant Pathol. 116: 33-43. https://doi.org/10.1007/s10658-006-9035-2
  7. Eriksson, A. R. B., Andersson, R. A., Pirhonen, M. and Palva, E. T. 1998. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 11: 743-752. https://doi.org/10.1094/MPMI.1998.11.8.743
  8. Fox, R. T. V., Manners, J. G. and Myers, A. 1971. Ultrastructure of entry and spread of Erwinia carotovora var. atroseptica into potato tubers. Potato Res. 14: 61-73. https://doi.org/10.1007/BF02355930
  9. Hwang, S. M., Jang, K. S., Choi, Y. H., Kim, H. and Choi, G. J. 2017. Development of an efficient bioassay method to evaluate resistance of chili pepper cultivars to Ralstonia solanacearum. Res. Plant Dis. 23: 334-347. (In Korean)
  10. Jee, S. N., Malhotra, S., Roh, E. J., Jung, K. S., Lee, D. W., Choi, J. H. et al. 2012. Isolation of bacteriophages which can infect Pectobacterium carotovorum subsp. carotovorum. Res. Plant Dis. 18: 225-230. (In Korean) https://doi.org/10.5423/RPD.2012.18.3.225
  11. Jeger, M. J. and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 102: 32-40. https://doi.org/10.1007/s001220051615
  12. Jo, E. J., Jang, K. S., Choi, Y. H., Ahn, K. G. and Choi, G. J. 2016. Resistance of cabbage plants to isolates of Plasmodiophora brassicae. Korean J. Hortic. Sci. Technol. 34: 442-452. (In Korean)
  13. Jo, S.-J. Shim, S.-A., Jang, K. S., Choi, Y. H., Kim, J.-C. and Choi, G. J. 2014. Resistance of chili pepper cultivars to isolates of Phytophthora capsici. Korean J. Hortic. Sci. Technol. 32: 66-76. (In Korean) https://doi.org/10.7235/hort.2014.13079
  14. Jones, S., Yu, B., Bainton, N. J., Birdsall, M., Bycroft, B. W., Chhabra, S. R. et al. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12: 2477-2482. https://doi.org/10.1002/j.1460-2075.1993.tb05902.x
  15. Kotoujansky, A. 1987. Molecular genetics of pathogenesis by soft-rot Erwinias. Annu. Rev. Phytopathol. 25: 405-430. https://doi.org/10.1146/annurev.py.25.090187.002201
  16. Kim, H., Jo, E. J., Choi, Y. H., Jang, K. S. and Choi, G. J. 2016. Pathotype classification of Plasmodiophora brassicae isolates using clubroot-resistant cultivar of Chinese cabbage. Plant Pathol. J. 32: 423-430. https://doi.org/10.5423/PPJ.OA.04.2016.0081
  17. Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis. 73: 745-747. https://doi.org/10.1094/PD-73-0745
  18. KSPP. 2009. Vegetables. In: List of Plant Disease in Korea 5th ed., eds. by W.-G. Kim and H. M. Koo, pp. 99-103. The Korean Society of Plant Pathology, Suwon, Korea. (In Korean)
  19. Lee, S. H. 2002. Effective inoculation method and induction of resistance against bacterial soft rot on Chinese cabbage. Master thesis. Chungbuk National University, Cheongju, Korea. (In Korean)
  20. Lee, W. J., Lee, J. H., Jang, K. S., Choi, Y. H., Kim, H. T. and Choi, G. J. 2015. Development of efficient methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Korean J. Hortic. Sci. Technol. 33: 70-82. https://doi.org/10.7235/hort.2015.14101
  21. Lefebvre, V. and Palloix, A. 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor. Appl. Genet. 93: 503-511. https://doi.org/10.1007/BF00417941
  22. Lefebvre, V., Pflieger, S., Thabuis, A., Caranta, C., Blattes, A., Chauvet, J. C. et al. 2002. Towards the saturation the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45: 839-854. https://doi.org/10.1139/g02-053
  23. Madden, L. V., Hughes, G. and van den Bosch, F. 2007. The Study of Plant Disease Epidemics, APS Press, St. Paul, MN, USA. 421 pp.
  24. Perombelon, M. C. M., Gullings-Handley, J. and Kelman, A. 1979. Population dynamics of Erwinia carotovora and pectolytic Clostridium spp. in relation to decay of potatoes. Phytopathology 69: 167-173. https://doi.org/10.1094/Phyto-69-167
  25. Pirhonen, M., Flego, D., Heikinheimo, R. and Palva, E. T. 1993. A small diffusible signal molecules is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12: 2467-2476. https://doi.org/10.1002/j.1460-2075.1993.tb05901.x
  26. Raju, M. R. B., Pal, V. and Jalali, I. 2008. Inoculation method of Pectobacterium carotovorum subsp. carotovorum and factors influencing development of bacterial soft rot in radish. J. Mycol. Pl. Pathol. 38: 311-315.
  27. Ren, J., Petzoldt, R. and Dickson, M. H. 2001. Screening and identification of resistance to bacterial soft rot in Brassica rapa. Euphytica 118: 271-280. https://doi.org/10.1023/A:1017522501229
  28. Rimmer, S. R. 2007. Bacterial soft rot. In: Compendium of Brassica Disease, eds. by S. R. Rimmer, V. I. Shattuck and L. Buchwaldt, pp. 59-60. APS Press, St. Paul, MN, USA.
  29. Risser, G., Banihashemi, Z. and Davis, D. W. 1976. A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66: 1105-1106. https://doi.org/10.1094/Phyto-66-1105
  30. Thabuis, A., Palloix, A., Pflieger, S., Daubeze, A. M., Caranta, C. and Lefebvre, V. 2003. Comparative mapping of Phytophthora resistance loci in pepper germplasm: Evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor. Appl. Genet. 106: 1473-1485. https://doi.org/10.1007/s00122-003-1206-3
  31. Thabuis, A., Lefebvre, V., Bernard, G., Daubeze, A. M., Phaly, T., Pochard, E. et al. 2004. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 109: 342-351.
  32. Williams, P. H. 1981. Screening crucifers for multiple disease resistance. University of Wisconsin, Medison, WI, USA. 105 pp.