DOI QR코드

DOI QR Code

Anti-inflammatory Activity of the Methanol Extract from the Stem of Coriandrum Sativum in RAW 264.7 Cells

  • Jung, Ji Yun (College of Korean Medicine, Daegu Haany University) ;
  • Park, Chung A (College of Korean Medicine, Daegu Haany University)
  • 투고 : 2018.08.06
  • 심사 : 2018.09.25
  • 발행 : 2018.09.30

초록

Objectives : Coriandrum sativum is a medicinal herb that is used to enhance organoleptic quality and food flavor and as source of natural antioxidants. This research investigated the anti-inflammatory activity of Coriandrum sativum stem methanol extract (CSSE) using RAW 264.7 cells. Methods : Production of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and nitric oxide (NO) in the culture supernatant, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-${\kappa}B$) in the extract were assayed. Results : Treatment with CSSE ($100{\mu}g/m{\ell}$) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, and NF-${\kappa}B$ as well as production of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO induced by LPS. Conclusions : These results demonstrate that CSSE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-${\kappa}B$ in LPS-induced RAW 264.7 cells. Thus, CSSE may have therapeutic potential for a variety of inflammation-mediated diseases.

키워드

참고문헌

  1. Wangensteen H, Samuelsen AB, Malterud KE. Antioxidant activity in extracts of coriander. Food Chem. 2004 ; 88 : 293-7. https://doi.org/10.1016/j.foodchem.2004.01.047
  2. Samojlik I, Lakic N, Mimica-Dukic N, Dakovic-Svajcer K, Bozin B. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carumcarvi L.) (Apiaceae). J Agric Food Chem. 2010 ; 58 : 8848-53. https://doi.org/10.1021/jf101645n
  3. Dias MI, Barros L, Sousa MJ, Ferreira IC. Comparative study of lipophilic and hydrophilic antioxidants from in vivo and in vitro grown Coriandrum sativum. Plant Foods Hum Nutr. 2011 ; 66(2) : 181-6. https://doi.org/10.1007/s11130-011-0227-3
  4. Sreelatha S, Padma P, Umadevi M. Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem Toxicol. 2009 ; 47 : 702-8. https://doi.org/10.1016/j.fct.2008.12.022
  5. Padmaa M. Coriandrum sativum linn: a review. Pharmacol online News. 2009 ; 3 : 561-73.
  6. Asgarpanah J, Kazemivash N. Phytochemistry, pharmacology and medicinal properties of Coriandrum sativum L. Afr J Pharm Pharmaco. 2012 ; 6 : 2340-5.
  7. Oganesyan E, Nersesyan Z, Parkhomenko AY. Chemical composition of the above-ground part of Coriandrum sativum. Pharm Chem J-Ussr. 2007 ; 41 : 149-53. https://doi.org/10.1007/s11094-007-0033-2
  8. Kubo I, Fujita K-i, Kubo A, Nihei K-i, Ogura T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J Agr Food Chem. 2004 ; 52 : 3329-32. https://doi.org/10.1021/jf0354186
  9. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. Journal of Physiology and Pharmacology. 2003 ; 54 : 469-87.
  10. Lawrence T, Willoughby DA, Gilroy DW. Antiinflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology. 2002 ; 2 : 787-95. https://doi.org/10.1038/nri915
  11. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaB alpha phosphorylation, C/EBP and AP-1 activation. British Journal of Pharmacology. 2003 ; 139 : 11-20. https://doi.org/10.1038/sj.bjp.0705231
  12. Ghosh S, Ksarin M. Missing pieces in the NF-${\kappa}B$ puzzle. Cell. 2002 ; 109 : S81-S96. https://doi.org/10.1016/S0092-8674(02)00703-1
  13. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003 ; 37 : 355-61. https://doi.org/10.1016/j.npep.2003.09.005
  14. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Science. 2006 ; 97 : 439-47. https://doi.org/10.1111/j.1349-7006.2006.00197.x
  15. Wu TT, Tsai CW, Yao HT, Lii CK, Chen HW, Wu YL, Chen PY, Liu KL. Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages. J Sci Food Agric. 2010 ; 90(11) : 1846-54. https://doi.org/10.1002/jsfa.4023
  16. Zaidi SF, Muhammad JS, Shahryar S, Usmanghani K, Gilani AH, Jafri W, Sugiyama T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J Ethnopharmacol. 2012 ; 141(1) : 403-10. https://doi.org/10.1016/j.jep.2012.03.001
  17. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008 ; 454 : 436-44. https://doi.org/10.1038/nature07205
  18. Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2007 ; 292 : 829-38. https://doi.org/10.1152/ajpgi.00380.2006
  19. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horizons. 1995 ; 3 : 2-32.
  20. Southan GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochemistry and Pharmacology. 1996 ; 51 : 383-94. https://doi.org/10.1016/0006-2952(95)02099-3
  21. Watanabe K, Kawamori T, Nakatsugi S, Wakabayashi K. COX-2 and iNOS, good targets for chemoprevention of colon cancer. BioFactors. 2000 ; 12 : 129-33. https://doi.org/10.1002/biof.5520120120
  22. Chell S, Kadi A, Williams AC, Paraskeva C. Mediators of PGE2 synthesis and signaling down stream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochimica et Biophysica Acta. 2006 ; 1766 : 104-19.
  23. Whittle BJ, Varga C, Berko A, Horvath K, Posa A, Riley JP, Lundeen KA, Fourie AM, Dunford PJ. Attenuation of inflammation and cytokine production in rat colitis by a novel selective inhibitor of leukotriene A4 hydrolase. British Journal of Pharmacology. 2008 ; 153 : 983-91.
  24. Wang JP, Zhou YM, Ye YJ, Shang XM, Cai YL, Xiong CM, Wu YX, Xu HX. Topical antiinflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis . Journal of Ethnopharmacology. 2011 ; 137 : 1089-94. https://doi.org/10.1016/j.jep.2011.07.016
  25. Corsi L, Zavatti M, Geminiani E, Zanoli P, Baraldi M. Anti-inflammatory activity of the non-peptidyl low molecular weight radical scavenger IAC in carrageenan-induced oedema in rats. The Journal of Pharmacy and Pharmacology. 2011 ; 63 : 417-22. https://doi.org/10.1111/j.2042-7158.2010.01233.x
  26. Impellizzeri D, Esposito E, Mazzon E, Paterniti I, Paola RD, Bramanti P, Cuzzocrea S. Effect of apocynin, a NADPH oxidase inhibitor, on acute lung inflammation. Biochemistry and Pharmacology. 2011 ; 81 : 636-48. https://doi.org/10.1016/j.bcp.2010.12.006
  27. Aggarwal BB. Nuclear factor-${\kappa}B$: The enemy within. Cancer Cell. 2004 ; 6 : 203-8. https://doi.org/10.1016/j.ccr.2004.09.003
  28. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, Kim SG, Kim SC. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-${\kappa}B$-dependent iNOS and pro-inflammatory cytokines production. Br J Pharmacol. 2008 ; 154 : 165-73. https://doi.org/10.1038/bjp.2008.79
  29. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF- ${\kappa}B$ activation. Mutat Res. 2001 ; 480-481 : 243-68. https://doi.org/10.1016/S0027-5107(01)00183-X