References
- P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f-divergence via mean results, Math. Comput. Modelling 42 (1-2) (2005), 207-219. https://doi.org/10.1016/j.mcm.2004.02.044
- P. Cerone, S. S. Dragomir and F. Osterreicher, Bounds on extended f-divergences for a variety of classes, Kybernetika (Prague) 40 (6) (2004), 745-756. Preprint, RGMIA Res. Rep. Coll. 6 (1) (2003), Article 5. [ONLINE: http://rgmia.vu.edu.au/v6n1.html].
- I. Csiszar, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten, (German) Magyar Tud. Akad. Mat. Kutato Int. Kozl. 8 (1963), 85-108.
- S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 471-476. https://doi.org/10.1017/S000497270004051X
-
S. S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for the Csiszar
$\Phi$ -divergence in information theory, Math. J. Ibaraki Univ. 33 (2001), 35-50. https://doi.org/10.5036/mjiu.33.35 - S. S. Dragomir, Some inequalities for two Csiszar divergences and applications, Mat. Bilten. 25 (2001), 73-90.
- S. S. Dragomir, An upper bound for the Csiszar f-divergence in terms of the variational distance and applications, Panamer. Math. J. 12 (4) (2002), 43-54.
- S. S. Dragomir, Upper and lower bounds for Csiszar f-divergence in terms of Hellinger discrimination and applications, Nonlinear Anal. Forum 7 (1) (2002), 1-13.
- S. S. Dragomir, Bounds for f-divergences under likelihood ratio constraints, Appl. Math. 48 (3) (2003), 205-223. https://doi.org/10.1023/A:1026054413327
- S. S. Dragomir, New inequalities for Csiszar divergence and applications, Acta Math. Vietnam. 28 (2) (2003), 123-134.
- S. S. Dragomir, A generalized f-divergence for probability vectors and applications, Panamer. Math. J. 13 (4) (2003), 61-69.
-
S. S. Dragomir, Some inequalities for the Csiszar
$\varphi$ -divergence when$\varphi$ is an L-Lipschitzian function and applications, Ital. J. Pure Appl. Math. 15 (2004), 57-76. -
S. S. Dragomir, A converse inequality for the Csiszar
$\Phi$ -divergence, Tamsui Oxf. J. Math. Sci. 20 (1) (2004), 35-53. - S. S. Dragomir, Some general divergence measures for probability distributions, Acta Math. Hungar. 109 (4) (2005), 331-345. https://doi.org/10.1007/s10474-005-0251-6
- S. S. Dragomir, A refinement of Jensen's inequality with applications for f-divergence measures, Taiwanese J. Math. 14 (1) (2010), 153-164. https://doi.org/10.11650/twjm/1500405733
- S. S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces, Commun. Math. Anal. 15 (2) (2013), 1-14.
- F. Hiai, Fumio and D. Petz, From quasi-entropy to various quantum information quantities, Publ. Res. Inst. Math. Sci. 48 (3) (2012), 525-542. https://doi.org/10.2977/PRIMS/79
- F. Hiai, M. Mosonyi, D. Petz and C. Beny, Quantum f-divergences and error correction, Rev. Math. Phys. 23 (7) (2011), 691-747. https://doi.org/10.1142/S0129055X11004412
- P. Kafka, F. Osterreicher and I. Vincze, On powers of f-divergence defining a distance, Studia Sci. Math. Hungar. 26(1991), 415-422.
- F. Liese and I. Vajda, Convex Statistical Distances, Teubuer - Texte zur Mathematik, Band 95, Leipzig, 1987.
- F. Osterreicher and I. Vajda, A new class of metric divergences on probability spaces and its applicability in statistics, Ann. Inst. Statist. Math. 55 (3) (2003), 639-653. https://doi.org/10.1007/BF02517812
- D. Petz, Quasi-entropies for states of a von Neumann algebra, Publ. RIMS. Kyoto Univ. 21 (1985), 781-800.
- D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23 (1986), 57-65. https://doi.org/10.1016/0034-4877(86)90067-4
- D. Petz, From quasi-entropy, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 55 (2012), 81-92.
- D. Petz, From f-divergence to quantum quasi-entropies and their use, Entropy 12 (3) (2010), 304-325. https://doi.org/10.3390/e12030304
- M. B. Ruskai, Inequalities for traces on von Neumann algebras, Commun. Math. Phys. 26 (1972), 280-289. https://doi.org/10.1007/BF01645523