DOI QR코드

DOI QR Code

Augmented renal clearance

  • Atkinson, Arthur J. Jr. (Department of Pharmacology, Feinberg School of Medicine, Northwestern University)
  • 발행 : 2018.09.15

초록

Adding to the complexity of caring for critically ill patients is the fact that many of them have a creatinine clearance that exceeds $130mL/min/1.73m^2$. This phenomenon, termed augmented renal clearance (ARC), has only recently been widely recognized and its pathogenesis remains incompletely understood. However, ARC has been shown to result in increased dose requirements for drugs that are primarily eliminated by renal excretion, including many antimicrobial agents and enoxaparin. Recognition of ARC is hampered by the fact that the standard creatinine-based equations used to estimate renal function are not accurate in this clinical setting and the diagnosis is best established using both serum and urine creatinine measurements to calculate clearance. So a high index of clinical suspicion and awareness is usually required before this step is taken to confirm the diagnosis of ARC.

키워드

참고문헌

  1. Dettli L. Individualization of drug dosage in patients with renal disease. Med Clin North Am 1974;58:977-985. https://doi.org/10.1016/S0025-7125(16)32094-6
  2. Atkinson AJ Jr, Huang SM. Nephropharmacology: Drugs and the kidney. Clin Pharmacol Ther 2009;86:453-456. doi: 10.1038/clpt.2009.191.
  3. Baptista JP, Udy AA. Augmented renal clearance in critical illness: "The Elephant in the ICU". Minerva Anestesiol 2015; 81:1050-1052.
  4. Zaske DE, Sawchuk RJ, Gerding DN, Strate RG. Increased dosage requirements of gentamicin in burn patients. J Trauma 1976;16:824-828. https://doi.org/10.1097/00005373-197610000-00014
  5. Zaske DE, Sawchuk RJ, Strate RG. The necessity of increased doses of amikacin in burn patients. Surgery 1978;84:603-608.
  6. Loirat P, Rohan J, Baillet A, Beaufils F, David R, Chapman A. Increased glomerular filtration rate in patients with major burns and its effect on the pharmacokinetics of tobramycin. N Engl J Med 1978;299:915-919. https://doi.org/10.1056/NEJM197810262991703
  7. Ruiz S, Minville V, Asehnoune K, Virtos M, Georges B, Fourcade O, et al. Screening of patients with augmented renal clearance in ICU: taking into account the CKD-EPI equation, the age, and the cause of admission. Ann Intensive Care 2015;5:49. doi 10.1186/s13613-015-0090-8.
  8. Bilbao-Meseguer I, Rodriguez-Gascon A, Rarrasa H, Isla A, Solinis MA. Augmented renal clearance in critically ill patients: A systematic review. Clin Pharmacokinet 2018;57:1107-1121. doi.org/10.1007/s40262-018-0636-7.
  9. Udy AA, Jarrett P, Lassig-Smith M, Stuart J, Starr T, Dunlop R, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance. J Neurotrauma 2017;34:137-144. doi: 10.1089/neu.2015.4328.
  10. Barletta JF, Mangram AJ, Byrne M, Sucher JF, Hollingworth AK, Ali-Osman FR, et al. Identifying augmented renal clearance in trauma patients: Validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg 2017;82:665-671. doi:10.1097/TA.0000000000001387.
  11. Lautrette A, Phan TN, Ouchchane L, AitiHassan A, Tixier V, Heng AE, et al. High creatinine clearance in critically ill patients with community-acquired acute infectious meningitis. BMC Nephrol 2012;13:124. doi:10.1186/1471-2369-13-124.
  12. May CC, Arora S, Parli SE, Fraser JF, Bastin MT, Cook AM. Augmented renal clearance in patients with subarachnoid hemorrhage. Neurocrit Care 2015;23:374-379. doi: 10.1007/s12028-015-0127-8.
  13. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 2013;17:R35.doi:10.1186/cc12544.
  14. De Waele JJ, Dumoulin A, Janssen A, Hoste EA. Epidemiology of augmented renal clearance in mixed ICU patients. Minerva Anestesiol 2015;81:1079-1085.
  15. Declercq P, Nijs S, D'Hoore A, Van Wijngaerden E, Wolthuis A, de Buck van Overstraeten A, et al. Augmented renal clearance in non-critically ill abdominal and trauma surgery patients is an underestimated phenomenon: a point prevalence study. J Trauma Acute Care Surg 2016;81:468-477. doi: 10.1097/TA.0000000000001138.
  16. Sturgiss SN, Wilkinson R, Davison JM. Renal reserve during human pregnancy. Am J Physiol 1996;271:F16-F20.
  17. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, et al. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 2011;15:R139. doi:10.1186cc10262. https://doi.org/10.1186/cc10262
  18. Grootaert V, Willems L, Debaveye Y, Meyfroidt G, Spriet I. Augmented renal clearance in the critically ill: how to assess kidney function. Ann Pharmacother 2012;46:952-959. doi: 10.1345/aph.1Q708.
  19. Tsai D, Udy AA, Stewart PC, Gourley S, Morick NM, Lipman J, et al. Prevalence of augmented renal clearance and performance of glomerular filtration estimates in indigenous Australian patients requiring intensive care admission. Anaesth Intensive Care 2018;46:42-50. https://doi.org/10.1177/0310057X1804600107
  20. Brown R, Babcock R, Talbert J, Gruenberg J, Czurak C, Campbell M. Renal function in critically ill postoperative patients: sequential assessment of creatinine osmolar and free water clearance. Crit Care Med 1980;8:68-72. https://doi.org/10.1097/00003246-198002000-00004
  21. Udy A, Jarrett P, Stuart J, Lassig-Smith M, Starr T, Dunlop R, et al. Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds. Crit Care 2014;18:657. doi:10.1186/s13054-014-0667-z.
  22. Udy AA, Jarrett P, Lassig-Smith M, Stuart J, Starr T, Dunlop R, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance. J Neurotrauma 2017;34:137-144. doi: 10.1089/neu.2015.4328.
  23. Varga I, Rigo J Jr, Somos P, Joo JG, Nagy B. Analysis of maternal circulation and renal function in physiologic pregnancies: parallel examinations of the changes in the cardiac output and the glomerular filtration rate. J Matern Fetal Med 2000;9:97-104.
  24. Sime FB, Udy AA, Roberts JA. Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol 2015;24:1-6. doi: 10.1016/j.coph.2015.06.002.
  25. Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation. Crit Care Med 1996;24:163-172. https://doi.org/10.1097/00003246-199601000-00026
  26. Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene 2015;569:1-6. doi: 10.1016/j.gene.2015.06.029.
  27. Shannon JA, Jolliffe N, Smith HW. The excretion of urine in the dog. IV. The effect of maintenance diet, feeding, etc., upon the quantity of glomerular filtrate. Am J Physiol 1932;101:625-638. https://doi.org/10.1152/ajplegacy.1932.101.4.625
  28. Molitoris BA. Rethinking CKD evaluation: should we be quantifying basal or stimulated GFR to maximize precision and sensitivity? Am J Kidney Dis 2017;69:675-683. doi: 10.1053/j.ajkd.2016.11.028.
  29. Baptista JP, Sousa E, Martins PJ, Pimentel JM. Augmented renal clearance in septic patients and implications for vancomycin optimization. Int J Antimicrob Agents 2012;39:420-423. doi: 10.1016/j.ijantimicag.2011.12.011.
  30. Carrie C, Petit L, d'Houdain N, Sauvage N, Cottenceau V, Lafitte M, et al. Association between augmented renal clearance, antibiotic exposure and clinical outcome in critically ill septic patients receiving high doses of ${\beta}$-lactams administered by continuous infusion: a prospective observational study. Int J Antimicrob Agents 2018;51:443-449. doi: 10.1016/j.ijantimicag.2017.11.013.
  31. Abdel El Naeem HEM, Abdelhamid MHE, Atteya DAM. Impact of augmented renal clearance on enoxaparin therapy in critically ill patients. Egypt J Anesth 2017;33:113-117. https://doi.org/10.1016/j.egja.2016.11.001
  32. Claus BO, Hoste EA, Colpaert K, Robays H. Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care 2013;28:695-700. doi: 10.1016/j.jcrc.2013.03.003.
  33. Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L, et al. Augmented renal clearance, low ${\beta}$-lactam concentrations and clinical outcomes in the critically ill: An observational prospective cohort study. Int J Antimicrob Agents 2015;45:385-392. doi: 10.1016/j.ijantimicag.2014.12.017.
  34. European Commission on Antimicrobial Susceptibility Testing. Internet at: http://www.eucast.org/clinical.breakpoints/ Accessed 17 May 2018
  35. Udy AA, Dulhunty JM, Roberts JA, Davis JS, Web SAR, Bellomo R, et al. Association between augmented renal clearance and clinical outcomes in patients receiving ${\beta}$-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomized placebo-controlled, clinical trial. Int J Antimicrob Agents 2017;49:624-630. doi: 10.1016/j.ijantimicag.2016.12.022.
  36. Udy AA, De Waele JJ, Lipman J. Augmented renal clearance and therapeutic monitoring of ${\beta}$-lactams. Int J Antimicrob Agents 2015;45:331-333. doi: 10.1016/j.ijantimicag.2014.12.020.
  37. Udy A, Roberts JA, Boots RJ, Lipman J. You only find what you look for: the importance of high creatinine clearance in the critically ill. Anaesth Intensive Care 2009;27:11-13.

피인용 문헌

  1. Case Report: Subtherapeutic Vancomycin and Meropenem Concentrations due to Augmented Renal Clearance in a Patient With Intracranial Infection Caused by Streptococcus intermedius vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.728075
  2. Key Challenges in Providing Effective Antibiotic Therapy for Critically Ill Patients with Bacterial Sepsis and Septic Shock vol.109, pp.4, 2018, https://doi.org/10.1002/cpt.2203
  3. Population Pharmacokinetics and Outcomes of Critically Ill Pediatric Patients Treated with Intravenous Colistin at Higher Than Recommended Doses vol.65, pp.6, 2018, https://doi.org/10.1128/aac.00002-21
  4. Population Pharmacokinetic Modeling and Simulations of Imipenem in Burn Patients With and Without Continuous Venovenous Hemofiltration in the Military Health System vol.61, pp.9, 2018, https://doi.org/10.1002/jcph.1865
  5. Population Pharmacokinetics of Levetiracetam and Dosing Evaluation in Critically Ill Patients with Normal or Augmented Renal Function vol.13, pp.10, 2018, https://doi.org/10.3390/pharmaceutics13101690
  6. The impact of early target attainment of vancomycin in critically ill patients with confirmed Gram-positive infection: A retrospective cohort study vol.21, pp.1, 2018, https://doi.org/10.1186/s12879-021-06840-y