DOI QR코드

DOI QR Code

Solubility of TiO2 in NaF-CaF2-BaF2 Melts

  • Yoo, Jeong-Hyun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Sung-Wook (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • Received : 2018.04.19
  • Accepted : 2018.06.02
  • Published : 2018.11.20

Abstract

The solubility of $TiO_2$ in $NaF-CaF_2-BaF_2$ ternary eutectic melts was investigated at the temperature range of $1025-1150^{\circ}C$. The least-squares equation was obtained from the relationship between the reciprocal temperature and the natural logarithm of the titanium concentration in the melts saturated with $TiO_2$. The corresponding partial molar enthalpy of dissolution of $TiO_2$ was found to be 188 kJ/mol. The titanium saturation concentration was 3.73 wt% at $1100^{\circ}C$. From the titanium concentration change with the added amount of $TiO_2$ at different holding time after a final stirring, it was found that not only complete dissolution of $TiO_2$ but also enough sedimentation of excessive $TiO_2$ should be guaranteed to obtain more reliable solubility data. The holding time of 10 h was found to be enough for the excessive $TiO_2$ particles to settle down in our experimental conditions. It is noteworthy that in case of adding $TiO_2$ in excess of its solubility, the $Ba_{1.12}(Ti_8O_{16})$ phase was observed at the lower and bottom of the solidified salt ingots.

Keywords

Acknowledgement

Supported by : Korea Institute of Geoscience and Mineral Resources (KIGAM)

References

  1. C. Veiga, J.P. Davim, A.J.R. Loureiro, Rev. Adv. Mater. Sci. 32, 133 (2012)
  2. W.G. Seo, D.H. Jeong, D.J. Lee, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 23, 648 (2017) https://doi.org/10.1007/s12540-017-6730-9
  3. C. Velotti, A. Astarita, C. Leone, S. Genna, F.M.C. Minutolo, A. Squillace, Procedia CIRP 41, 975 (2016) https://doi.org/10.1016/j.procir.2016.01.006
  4. Y.H. Jo, Y.H. Kim, Y.J. Jo, J.G. Seong, S.Y. Chang, P.J. Reucroft, S.B. Kim, W.H. Lee, Met. Mater. Int. 21, 337 (2015) https://doi.org/10.1007/s12540-015-4225-0
  5. S. Delaye, P. Streeter, E. Morales, P. Wood, T. Senior, J. Hart, T. Allen, Procedia Eng. 147, 354 (2016) https://doi.org/10.1016/j.proeng.2016.06.309
  6. R.J. Anderson, J. Franklin Inst. 184, 469 (1917) https://doi.org/10.1016/S0016-0032(17)90337-0
  7. G.M. Bedinger, Mineral Commodity Summaries (US Geological Survey, Reston, Virginia, 2017), p. 178
  8. W. Kroll, J. Franklin Inst. 260, 169 (1955) https://doi.org/10.1016/0016-0032(55)90727-4
  9. C. Henry, CSIRO Titanium Technologies and Additive Manufacturing, http://www.csiro.au. Accessed 31 May 2018
  10. W. Kroll, J. Electrochem. Soc. 78, 35 (1940) https://doi.org/10.1149/1.3071290
  11. W.E. Dunn, Metall. Trans. B 10, 271 (1979) https://doi.org/10.1007/BF02652471
  12. W. Zhang, Z. Zhu, C.Y. Cheng, Hydrometallurgy 108, 177 (2011) https://doi.org/10.1016/j.hydromet.2011.04.005
  13. K. Nikami, T.H. Okabe, K. Ono, Shigen-to-Sozai 118, 529 (2002) https://doi.org/10.2473/shigentosozai.118.529
  14. H. Zheng, H. Ito, T.H. Okabe, Mater. Trans. 48, 2244 (2007) https://doi.org/10.2320/matertrans.MER2007115
  15. S.J. Kim, J.M. Oh, J.W. Lim, Met. Mater. Int. 22, 658 (2016) https://doi.org/10.1007/s12540-016-6111-9
  16. R.O. Suzuki, J. Phys. Chem. Solids 66, 461 (2005) https://doi.org/10.1016/j.jpcs.2004.06.041
  17. K. Ono, Mater. Trans. 45, 1660 (2004) https://doi.org/10.2320/matertrans.45.1660
  18. T. Abiko, I. Park, T.H. Okabe, in Proceedings of 10th World Conference on Titanium, Hamburg, Germany, 2003, p. 253
  19. G.Z. Chen, D.J. Fray, T.W. Farthing, Nature 407, 361 (2000) https://doi.org/10.1038/35030069
  20. H.S. Shin, J.M. Hur, S.M. Jeong, K.Y. Jung, J. Ind. Eng. Chem. 18, 438 (2012) https://doi.org/10.1016/j.jiec.2011.11.111
  21. ACerS-NIST Phase Equilibria Diagrams PC Database, Ver. 4.1 (ACerS/NIST, Westerville/Gaithersburg, 2016)
  22. V.N. Pavlikov, V.A. Yurchenko, E.S. Lugovskaya, L.M. Lopato,S.G. Tresvyatskii, Zh. Neorg. Khim. 20, 3076 (1975)
  23. V.N. Pavlikov, V.A. Yurchenko, E.S. Lugovskaya, L.M. Lopato,S.G. Tresvyatskii, Russ. J.Inorg. Chem. (Engl. Transl.) 20, 1702 (1975)
  24. L. Hillert, Acta Chem. Scand. 19, 1516 (1965) https://doi.org/10.3891/acta.chem.scand.19-1516
  25. G.A. Bukhalova, V.T. Berezhnaya, A.G. Bergman, Zh. Neorg. Khim. 6, 2359 (1961)
  26. G.A. Bukhalova, V.T. Berezhnaya, A.G. Bergman, Russ. J. Inorg. Chem. (Engl. Transl.) 6, 1196 (1961)
  27. E.T. Turkdogan, Physical Chemistry of High Temperature Technology (Academic Press Inc, 1980)
  28. X.M. Nie, L.Y. Dong, C.G. Bai, D.F. Chen, G.B. Qiu, Trans. Nonferrous Met. Soc. China 16, 723 (2006) https://doi.org/10.1016/S1003-6326(06)60128-3
  29. Powder Diffraction Files: Card No. 77-0883, Database Edition (The International Center for Diffraction Data (ICDD), 2011)
  30. D.S. Filimonov, Z.K. Liu, C.A. Randall, Mater. Res. Bull. 38, 545 (2003) https://doi.org/10.1016/S0025-5408(03)00033-3