DOI QR코드

DOI QR Code

Enhanced Densification and Hardness of Titanium Bodies Sintered by Advanced Hydrogen Sintering Process

  • Oh, Jung-Min (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University) ;
  • Koo, Ja-Geon (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University) ;
  • Lim, Jae-Won (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University)
  • Received : 2018.02.20
  • Accepted : 2018.04.23
  • Published : 2018.11.20

Abstract

A new sintering technique for enhancing a densification and hardness of sintered titanium body by supplying hydrogen was developed (Hydrogen Sintering Process, HSP). The HSP was developed by only injecting hydrogen into an argon atmosphere during the core time. As a result, sound titanium sintered bodies with high density and hardness were obtained by the HSP. In addition, a pore size and number of the HSP specimens were smaller than those of the argon atmosphere specimen. It was found that the injecting hydrogen into the argon atmosphere by HSP can prevent the formation of oxide layers, resulting in enhanced densification and hardness.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S. Martin, R. Parekh, M. Guessasma, J. Lechelle, J. Fortin, K. Saleh, Powder Technol. 270, 637 (2015) https://doi.org/10.1016/j.powtec.2014.03.057
  2. S.D. Luo, Y.F. Yang, G.B. Schaffer, M. Qian, J. Mater. Process. Technol. 214, 660 (2014) https://doi.org/10.1016/j.jmatprotec.2013.10.010
  3. M. Jose, G. Juarez, V. David Jaramillo, A. Ricardo Cuenca, L. Fernando Juarez, Powder Technol. 221, 264 (2012) https://doi.org/10.1016/j.powtec.2012.01.011
  4. J.M. Oh, K.H. Heo, W.B. Kim, G.S. Choi, J.W. Lim, Mater. Trans. 54, 119 (2013) https://doi.org/10.2320/matertrans.M2012304
  5. A.E.W. Jarfors, D.L. Butler, K.L.S. Goi, J. Alloys Compd. 594, 202 (2014) https://doi.org/10.1016/j.jallcom.2014.01.105
  6. J.M. Oh, I.H. Choi, C.Y. Suh, H. Kwon, J.W. Lim, K.M. Roh, Met. Mater. Int. 22, 488 (2016) https://doi.org/10.1007/s12540-016-5622-8
  7. T.H. Okabe, T. Oishi, K. Ono, J. Alloys Compd. 184, 43 (1992) https://doi.org/10.1016/0925-8388(92)90454-H
  8. D.W. Lee, H.S. Lee, J.H. Park, S.M. Shin, J.P. Wang, Procedia Manuf. 2, 550 (2015) https://doi.org/10.1016/j.promfg.2015.07.095
  9. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran, M. Dunstan, Scr. Mater. 107, 103 (2015) https://doi.org/10.1016/j.scriptamat.2015.05.032
  10. P. Sun, Z.Z. Fang, M. Koopman, J. Paramore, K.S.R. Chandran, Y. Ren, J. Lu, Acta Mater. 84, 29 (2015) https://doi.org/10.1016/j.actamat.2014.10.045
  11. G. Lutjering, J.C. Williams, Titanium (Springer, Berlin, 2007), pp. 7-11
  12. L. Bozoni, E.M. Ruiz-Navas, E. Gordo, Mater. Des. 60, 226 (2014) https://doi.org/10.1016/j.matdes.2014.04.005
  13. H.C. Hsu, S.K. Hsu, S.C. Wu, P.H. Wang, W.F. Ho, J. Alloys Compd. 575, 326 (2013) https://doi.org/10.1016/j.jallcom.2013.05.186
  14. J.M. Oh, J.G. Koo, J.W. Lim, Powder Technol. 330, 27 (2018) https://doi.org/10.1016/j.powtec.2018.02.018
  15. D. Setoyama, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka, J. Alloys Compd. 385, 156 (2004) https://doi.org/10.1016/j.jallcom.2004.04.132

Cited by

  1. Corrosion Behavior of SiC and Si3N4 by Alkali Gas vol.58, pp.1, 2018, https://doi.org/10.3365/kjmm.2020.58.1.17
  2. Effect of α-lath size on the mechanical properties of Ti-6Al-4V using core time hydrogen heat treatment vol.36, pp.7, 2020, https://doi.org/10.1080/02670836.2020.1745425
  3. Effect of α-lath size on the mechanical properties of Ti-6Al-4V using core time hydrogen heat treatment vol.36, pp.7, 2020, https://doi.org/10.1080/02670836.2020.1745425
  4. Powder Casting: Producing Bulk Metal Components from Powder Without Compaction vol.72, pp.9, 2018, https://doi.org/10.1007/s11837-020-04261-x