DOI QR코드

DOI QR Code

Circulating Cell-free Tumor Nucleic Acids in Gastric Cancer

위암에서의 순환종양핵산

  • Lee, Hyun-Ji (Department of Laboratory Medicine, Pusan National University Yangsan Hospital) ;
  • Lee, Sun Min (Department of Laboratory Medicine, Pusan National University Yangsan Hospital)
  • 이현지 (양산부산대학교병원 진단검사의학과) ;
  • 이선민 (양산부산대학교병원 진단검사의학과)
  • Received : 2018.04.06
  • Accepted : 2018.06.06
  • Published : 2018.09.30

Abstract

Gastric cancer is still the leading cause of cancer deaths, especially in Asian countries. Recently, many studies have analyzed cell-free nucleic acids (cfNAs) circulating in the blood, for the early diagnosis of cancer and monitoring its progression. Circulating tumor nucleic acids (ctNAs) originate in a tumor and contain tumor-related genetic or epigenetic alterations. This review defines the nomenclatures of each form of cfNAs and describes the characteristics of circulating tumor DNA (ctDNA) and microRNA (miRNA), two major forms of ctNAs studied in gastric cancer research to date. We compare available studies on ctDNA, and explain trends observed in studies of miRNAs in gastric cancers. As these new blood-based biomarkers have attracted increasing attention, we have discussed several important points to be considered before the clinical translation of ctNA detection. We have also discussed the current status of research in this field, and clinical applications of specific ctNAs as tumor markers for gastric cancer diagnosis.

Keywords

References

  1. Jung KW, Won YJ, Kong HJ, Lee ES. Prediction of cancer incidence and mortality in Korea, 2018. Cancer Res Treat 2018;50:317-323. https://doi.org/10.4143/crt.2018.142
  2. National Cancer Screening Business Information System [Internet]. Goyang: National Cancer Center, 2017 Nov 20 [cited 2018 Mar 12]. Available from: http://www.index.go.kr/potal/main/EachDtl-PageDetail.do?idx_cd=1440
  3. Jain S, Pincus MR, Bluth MH, McPherson RA, Bowne WB, Lee P. Diagnosis and management of cancer using serologic and other body fluid markers. In: Richard A. McPherson, ed. Henry's clinical diagnosis and management by laboratory methods. St. Louis: Elsevier, 2017:1145-1449.
  4. Liandou E, Hoon D. Circulating tumor cells and circulating tumor DNA. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz textbook of clinical chemistry and molecular diagnostics. 6th ed. St. Louis: Elsevier, 2018: 1111-1158.
  5. Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 1999;18:65-73. https://doi.org/10.1023/A:1006260319913
  6. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016;6:479-491. https://doi.org/10.1158/2159-8290.CD-15-1483
  7. Garcia-Olmo DC, Garcia-Olmo D. Biological role of cell-free nucleic acids in cancer: the theory of genometastasis. Crit Rev Oncog 2013;18:153-161. https://doi.org/10.1615/CritRevOncog.v18.i1-2.90
  8. Shaw JA, Page K, Blighe K, et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 2012;22:220-231. https://doi.org/10.1101/gr.123497.111
  9. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24. https://doi.org/10.1126/scitranslmed.3007094
  10. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 2013;424:222-230. https://doi.org/10.1016/j.cca.2013.05.022
  11. Yu J, Gu G, Ju S. Recent advances in clinical applications of circulating cell-free DNA integrity. Lab Med 2014;45:6-11. https://doi.org/10.1309/LMKKOX6UJZQGW0EA
  12. Devonshire AS, Whale AS, Gutteridge A, et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 2014;406:6499-6512. https://doi.org/10.1007/s00216-014-7835-3
  13. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell 2017;31:172-179. https://doi.org/10.1016/j.ccell.2017.01.002
  14. Chaudhuri AA, Binkley MS, Osmundson EC, Alizadeh AA, Diehn M. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin Radiat Oncol 2015;25:305-312. https://doi.org/10.1016/j.semradonc.2015.05.001
  15. Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics 2017;15:59-72. https://doi.org/10.1016/j.gpb.2016.12.004
  16. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27:1386-1422. https://doi.org/10.1093/annonc/mdw235
  17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  18. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42:D68-D73. https://doi.org/10.1093/nar/gkt1181
  19. miRBase: the microRNA database. Release 22 [Internet]. Manchester: Griffiths-Jones lab, 2018 Mar 12 [Cited 2018 Mar 12]. Available from: http://www.mirbase.org/
  20. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.
  21. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20. https://doi.org/10.1016/j.cell.2004.12.035
  22. Singh R, Ramasubramanian B, Kanji S, Chakraborty AR, Haque SJ, Chakravarti A. Circulating microRNAs in cancer: hope or hype? Cancer Lett 2016;381:113-121. https://doi.org/10.1016/j.canlet.2016.07.002
  23. Gabali A, Bluth MH. Molecular diagnosis of hematopoietic neoplasms. In: Richard A. McPherson, ed. Henry's clinical diagnosis and management by laboratory methods. St. Louis: Elsevier, 2016:1465-1491.
  24. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 1994;86:774-779. https://doi.org/10.1111/j.1365-2141.1994.tb04828.x
  25. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37:646-650.
  26. Park KU, Lee HE, Park DJ, et al. MYC quantitation in cell-free plasma DNA by real-time PCR for gastric cancer diagnosis. Clin Chem Lab Med 2009;47:530-536.
  27. Kolesnikova EV, Tamkovich SN, Bryzgunova OE, et al. Circulating DNA in the blood of gastric cancer patients. Ann N Y Acad Sci 2008;1137:226-231. https://doi.org/10.1196/annals.1448.009
  28. Hamakawa T, Kukita Y, Kurokawa Y, et al. Monitoring gastric cancer progression with circulating tumour DNA. Br J Cancer 2015;112:352-356. https://doi.org/10.1038/bjc.2014.609
  29. Fang WL, Lan YT, Huang KH, et al. Clinical significance of circulating plasma DNA in gastric cancer. Int J Cancer 2016;138:2974-2983. https://doi.org/10.1002/ijc.30018
  30. Park KU, Lee HE, Nam SK, et al. The quantification of HER2 and MYC gene fragments in cell-free plasma as putative biomarkers for gastric cancer diagnosis. Clin Chem Lab Med 2014;52:1033-1040.
  31. Shoda K, Ichikawa D, Fujita Y, et al. Monitoring the HER2 copy number status in circulating tumor DNA by droplet digital PCR in patients with gastric cancer. Gastric Cancer 2017;20:126-135. https://doi.org/10.1007/s10120-016-0599-z
  32. Gao Y, Zhang K, Xi H, et al. Diagnostic and prognostic value of circulating tumor DNA in gastric cancer: a meta-analysis. Oncotarget 2017;8:6330-6340.
  33. Rostami A, Bratman SV. Utilizing circulating tumour DNA in radiation oncology. Radiother Oncol 2017;124:357-364. https://doi.org/10.1016/j.radonc.2017.07.004
  34. Kim K, Shin DG, Park MK, et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann Surg Treat Res 2014;86:136-142. https://doi.org/10.4174/astr.2014.86.3.136
  35. Huang Z, Zhu D, Wu L, et al. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol Biomarkers Prev 2017;26:188-196. https://doi.org/10.1158/1055-9965.EPI-16-0607
  36. Zhang C, Zhang CD, Ma MH, Dai DQ. Three-microRNA signature identified by bioinformatics analysis predicts prognosis of gastric cancer patients. World J Gastroenterol 2018;24:1206-1215. https://doi.org/10.3748/wjg.v24.i11.1206
  37. Song B, Lin HX, Dong LL, Ma JJ, Jiang ZG. MicroRNA-338 inhibits proliferation, migration, and invasion of gastric cancer cells by the $Wnt/{\beta}-catenin$ signaling pathway. Eur Rev Med Pharmacol Sci 2018;22:1290-1296.
  38. Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010;11:136-146. https://doi.org/10.1016/S1470-2045(09)70343-2
  39. Javanmardi S, Aghamaali MR, Abolmaali SS, Mohammadi S, Tamaddon AM. miR-, an oncogenic target miRNA for cancer therapy: molecular mechanisms and recent advancements in chemo and radio-resistance. Curr Gene Ther 2017;16:375-389. https://doi.org/10.2174/1566523217666170102105119
  40. Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VI, Sekar P. Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol 2016;40:538-545. https://doi.org/10.1016/j.clinre.2016.02.010
  41. Wang Y, Zhou LB, Li XH. S100A4 expression and prognosis of gastric cancer: a meta-analysis. Genet Mol Res 2014;13:10398-10403. https://doi.org/10.4238/2014.December.12.1
  42. Ling Z, Li R. Clinicopathological and prognostic value of S100A4 expression in gastric cancer: a meta-analysis. Int J Biol Markers 2014;29:e99-e111. https://doi.org/10.5301/jbm.5000054
  43. Arita T, Ichikawa D, Konishi H, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res 2013;33:3185-3193.
  44. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014;20:548-554. https://doi.org/10.1038/nm.3519
  45. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-714. https://doi.org/10.1038/nrg2634
  46. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005;6:109-118. https://doi.org/10.1038/nrg1522
  47. Umetani N, Hiramatsu S, Hoon DS. Higher amount of free circulating DNA in serum than in plasma is not mainly caused by contaminated extraneous DNA during separation. Ann N Y Acad Sci 2006;1075:299-307. https://doi.org/10.1196/annals.1368.040
  48. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926-930. https://doi.org/10.1126/science.aar3247
  49. Creemers A, Krausz S, Strijker M, et al. Clinical value of ctDNA in upper-GI cancers: a systematic review and meta-analysis. Biochim Biophys Acta 2017;1868:394-403.
  50. Lowes LE, Bratman SV, Dittamore R, et al. Circulating tumor cells (CTC) and cell-free DNA (cfDNA) workshop 2016: scientific opportunities and logistics for cancer clinical trial incorporation. Int J Mol Sci 2016;17:E1505. https://doi.org/10.3390/ijms17091505