DOI QR코드

DOI QR Code

1,3,4-Oxadiazole-2(3H)-thione as a New Scaffold for Pim Kinase Inhibitors

  • Lee, Ah Yeon (Department of Chemistry, College of Natural Sciences, Keimyung University) ;
  • Hong, Victor Sukbong (Department of Chemistry, College of Natural Sciences, Keimyung University) ;
  • Lee, Jinho (Department of Chemistry, College of Natural Sciences, Keimyung University)
  • 투고 : 2018.10.22
  • 심사 : 2018.11.04
  • 발행 : 2018.11.30

초록

Pim kinases are important targets for cancer therapies because they are mainly responsible for cancer metastasis and overall therapeutic treatment responses. Because of their unusual structural feature in the hinge region of the ATP-binding site, new binding motifs have been discovered and used for the development of Pim kinases inhibitors. The results of a screening of 5-membered heteroaromatic compounds and the effects of structural modifications on the inhibition of Pim kinases' activities showed the potential scaffold for Pim inhibitors. 1,3,4-Oxadiazole-2(3H)-thione was found as a new scaffold for Pim kinase inhibitors.

키워드

참고문헌

  1. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011;11:23-34. https://doi.org/10.1038/nrc2986
  2. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010;95:1004-1015. https://doi.org/10.3324/haematol.2009.017079
  3. Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S. Structural Basis of Inhibitor Specificity of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM-1) Kinase. J Med Chem 2005;48:7604-7614. https://doi.org/10.1021/jm0504858
  4. Bogusz J, Zrubek K, Rembacz KP, Grudnik P, Golik P, Romanowska M, et al. Structural analysis of PIM1 kinase complexes with ATP-competitive inhibitors. Sci Rep 2017;7:13399. https://doi.org/10.1038/s41598-017-13557-z
  5. Gingipalli L, Block MH, Bao L, Cooke E, Dakin LA, Denz CR, et al. Discovery of 2,6-disubstituted pyrazine derivatives as inhibitors of CK2 and PIM kinases. Bioorg Med Chem Lett 2018;28:1336-1341. https://doi.org/10.1016/j.bmcl.2018.03.018
  6. Nishiguchi GA, Atallah G, Bellamacina C, Burger MT, Ding Y, Feucht PH, et al. Discovery of novel 3,5-disubstituted indole derivatives as potent inhibitors of Pim-1, Pim-2, and Pim-3 protein kinases. Bioorg Med Chem Lett 2011;21:6366-6369. https://doi.org/10.1016/j.bmcl.2011.08.105
  7. Burger MT, Han W, Lan J, Nishiguchi G, Bellamacina C, Lindval M, et al. Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors. ACS Med Chem Lett 2013;4:1193-1197. https://doi.org/10.1021/ml400307j
  8. Burger MT, Nishiguchi G, Han W, Lan J, Simmons R, Atallah G, et al. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies. J Med Chem 2015;58:8373-8386. https://doi.org/10.1021/acs.jmedchem.5b01275
  9. Nakano H, Saito N, Parker L, Tada Y, Abe M, Tsuganezawa K, et al. Rational Evolution of a Novel Type of Potent and Selective Proviral Integration Site in Moloney Murine Leukemia Virus Kinase 1 (PIM1) Inhibitor from a Screening-Hit Compound. J Med Chem 2012;55:5151-5164. https://doi.org/10.1021/jm3001289
  10. Nakano H, Hasegawa T, Kojima H, Okabe T, Nagano T. Design and Synthesis of Potent and Selective PIM Kinase Inhibitors by Targeting Unique Structure of ATP-Binding Pocket. ACS Med Chem Lett 2017;8:504-509. https://doi.org/10.1021/acsmedchemlett.6b00518
  11. Wang X, Kolesnikov A, Tay S, Chan G, Chao Q, Do S, et al. Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability. J Med Chem 2017;60:4458-4473. https://doi.org/10.1021/acs.jmedchem.7b00418
  12. Wang H-L, Cee VJ, Chavez Jr F, Lanman BA, Reed AB, Wu B, et al. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors. Bioorg Med Chem Lett 2015;25:834-840. https://doi.org/10.1016/j.bmcl.2014.12.068
  13. Wurz RP, Pettus LH, Jackson C, Wu B, Wang H-L, Herberich B, et al. The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors. Bioorg Med Chem Lett 2015;25:847-855. https://doi.org/10.1016/j.bmcl.2014.12.067
  14. More KN, Jang HW, Hong VS, Lee J. Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. Bioorg Med Chem Lett 2014;24:2424-2428. https://doi.org/10.1016/j.bmcl.2014.04.035
  15. Dakin LA, Block MH, Chen H, Code E, Dowling JE, Feng X, et al. Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg Med Chem Lett 2012;22:4599-4604. https://doi.org/10.1016/j.bmcl.2012.05.098
  16. Flanders Y, Dumas S, Caserta J, Nicewonger R, Baldino M, Lee C-S, et al. A versatile synthesis of novel pan-PIM kinase inhibitors with initial SAR study. Tetrahedron Lett 2015;56:3186-3190. https://doi.org/10.1016/j.tetlet.2015.01.119
  17. Wang X, Magnuson S, Pastor R, Fan E, Hu H, Tsui V, et al. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg Med Chem Lett 2013;23:3149-3153. https://doi.org/10.1016/j.bmcl.2013.04.020
  18. Barberis C, Moorcroft N, Pribish J, Tserlin E, Gross A, Czekaj M, et al. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors-Lead series identification-Part II. Bioorg Med Chem Lett 2017;27:4735-4740. https://doi.org/10.1016/j.bmcl.2017.08.068
  19. Pastor J, Oyarzabal J, Saluste G, Alvarez RM, Rivero V, Ramos F, et al. Hit to lead evaluation of 1,2,3-triazolo[4,5-b] pyridines as PIM kinase inhibitors. Bioorg Med Chem Lett 2012;22:1591-1597. https://doi.org/10.1016/j.bmcl.2011.12.130
  20. Pettus LH, Andrews KL, Booker SK, Chen J, Cee VJ, Chavez F, et al. Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors. J Med Chem 2016;59:6407-6430. https://doi.org/10.1021/acs.jmedchem.6b00610
  21. Haddach M, Michaux J, Schwaebe MK, Pierre F, O'Brien SE, Borsan C, et al. Discovery of CX-6258. A Potent, Selective, and Orally Efficacious pan-Pim Kinases Inhibitor. ACS Med Chem Lett 2012;3:135-139. https://doi.org/10.1021/ml200259q
  22. Wu B, Wang H-L, Cee VJ, Lanman BA, Nixey T, Pettus L, et al. Discovery of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amines as potent PIM inhibitors. Bioorg Med Chem Lett 2015;25:775-780. https://doi.org/10.1016/j.bmcl.2014.12.091
  23. Cee VJ, Chavez F, Herberich B, Lanman BA, Pettus LH, Reed AB, et al. Discovery and Optimization of Macrocyclic Quinoxaline-pyrrolo-dihydropiperidinones as Potent Pim-1/2 Kinase Inhibitors. ACS Med Chem Lett 2016;7:408-412. https://doi.org/10.1021/acsmedchemlett.5b00403
  24. Hu H, Wang X, Chan GKY, Chang JH, Do S, Drummond J, et al. Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorg Med Chem Lett 2015;25:5258-5264. https://doi.org/10.1016/j.bmcl.2015.09.052
  25. Tsuhako AL, Brown DS, Koltun ES, Aay N, Arcalas A, Chan V, et al. The design, synthesis, and biological evaluation of PIM kinase inhibitors. Bioorg Med Chem Lett 2012;22:3732-3738. https://doi.org/10.1016/j.bmcl.2012.04.025
  26. Kang JH, Hong VS, Lee J. Synthesis of (Z)-3-((1H-imidazol-5-yl)methylene)indolin-2-one Derivatives as Pim Kinase Inhibitors. QBS 2018; 37: 33-42.
  27. Charton J, Cousaert N, Bochu C, Willand N, Deprez B, Deprez-Poulain R. A versatile solid-phase synthesis of 3-aryl-1,2,4-oxadiazolones and analogues. Tetrahedron Lett 2007;48:1479-1483. https://doi.org/10.1016/j.tetlet.2006.12.050
  28. Tsoleridis CA, Charistos DA, Vagenas GV. UV and MO study on the deprotonation of some 2-aryl-${\Delta}2$-1,3,4-oxadiazoline-5-thiones. J Heterocycl Chem 1997;34:1715-1719. https://doi.org/10.1002/jhet.5570340612
  29. Sandstrom J, Wennerbeck I. Tautomeric Cyclic Thiones. Acta Chem Scand 1966;20:57-71. https://doi.org/10.3891/acta.chem.scand.20-0057
  30. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model 1999;17:57-61.
  31. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461.