DOI QR코드

DOI QR Code

Application of chloroplast promoters of Cyanidioschyzon merolae for exogenous protein expression

  • Received : 2018.08.01
  • Accepted : 2018.12.05
  • Published : 2018.12.15

Abstract

The ability to transform the chloroplast of Cyanidioschyzon merolae was limited by lack of confirmed and reliable promoter sequences (among other reasons), capable of delivering stable or modulated DNA transcription followed by protein synthesis. Our research has confirmed the applicability of three selected chloroplast promoters in C. merolae chloroplast overexpression of the exogenous protein (i.e., chloramphenicol acetyltransferase) and genetic transformation. These results might facilitate further research on genetically modified strains of C. merolae to envisage yet unknown aspect of cellular and plastic physiology as well as C. merolae potential applications as bio-factories or sources of useful chemicals.

Keywords

References

  1. Bock, R. 2007. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18:100-106. https://doi.org/10.1016/j.copbio.2006.12.001
  2. Daniel, E., Onwukwe, G. U., Wierenga, R. K., Quaggin, S. E., Vainio, S. J. & Krause, M. 2015. ATGme: Open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinformatics 16:303. https://doi.org/10.1186/s12859-015-0743-5
  3. Daniell, H., Singh, N. D., Mason, H. & Streatfield, S. J. 2009. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 14:669-679. https://doi.org/10.1016/j.tplants.2009.09.009
  4. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  5. Kanesaki, Y., Imamura, S., Minoda, A. & Tanaka, K. 2012. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res. 19:289-303. https://doi.org/10.1093/dnares/dss013
  6. Krupnik, T., Kotabová, E., van Bezouwen, L. S., Mazur, R., Garstka, M., Nixon, P. J., Barber, J., Kaňa, R., Boekema, E. J. & Kargul, J. 2013. A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J. Biol. Chem. 288:23529-23542. https://doi.org/10.1074/jbc.M113.484659
  7. Kuroiwa, T., Miyagishima, S., Matsunaga, S., Sato, N., Nozaki, H., Tanaka, K. & Misumi, O. 2017. Cyanidioschyzon merolae: a new model eukaryote for cell and organelle biology. Springer, Singapore, 365 pp.
  8. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  9. Maliga, P. 2004. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55:289-313. https://doi.org/10.1146/annurev.arplant.55.031903.141633
  10. Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T. & Tanaka, K. 2004. Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol. 45:667-671. https://doi.org/10.1093/pcp/pch087
  11. Ohnuma, M., Yokoyama, T., Inouye, T., Sekine, Y. & Tanaka, K. 2008. Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol. 49:117-120. https://doi.org/10.1093/pcp/pcm157
  12. Sambrock, J., Fritsch, E. F. & Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1546 pp.
  13. Shaw, W. V. & Unowsky, J. 1968. Mechanism of R factor-mediated chloramphenicol resistance. J. Bacteriol. 95:1976-1978.
  14. Thibault, G., Guitard, M. & Daigneault, R. 1980. A study of the enzymatic inactivation of chloramphenicol by highly purified chloramphenicol acetyltransferase. Biochim. Biophys. Acta 614:339-342. https://doi.org/10.1016/0005-2744(80)90223-5
  15. Towbin, H., Staehelin, T. & Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 76:4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  16. Zienkiewicz, M., Krupnik, T., Drozak, A., Golke, A. & Romanowska, E. 2017a. Chloramphenicol acetyltransferase: a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae. Protoplasma 254:587-596. https://doi.org/10.1007/s00709-015-0936-9
  17. Zienkiewicz, M., Krupnik, T., Drozak, A., Golke, A. & Romanowska, E. 2017b. Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. Plant Mol. Biol. 93:171-183. https://doi.org/10.1007/s11103-016-0554-8
  18. Zienkiewicz, M., Krupnik, T., Drozak, A., Wasilewska, W., Golke, A. & Romanowska, E. 2018. Deletion of psbQ' gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ' in PSII. Plant Mol. Biol. 96:135-149. https://doi.org/10.1007/s11103-017-0685-6

Cited by

  1. PEG-mediated, Stable, Nuclear and Chloroplast Transformation of Cyanidioschizon merolae vol.9, pp.17, 2018, https://doi.org/10.21769/bioprotoc.3355