References
- Akiyama, D. M. 1992. Future considerations for shrimp nutrition and the aquaculture feed industry. In Wyban, J. (Ed.) Proc. Special Session on Shrimp Farming, World Aquaculture Society, Baton Rouge, LA, pp. 198-205.
- Andersen, R. 2013. The microalgal cell. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Cultures: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex, pp. 3-20.
- Becker, W. 2004. Microalgae in human and animal nutrition. In Richimond, A. (Ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd., Oxford, pp. 312-351.
- Bleakley, S. & Hayes, M. 2017. Algal proteins: extraction, application, and challenges concerning production. Foods 6:33. https://doi.org/10.3390/foods6050033
- Borowitzka, M. A. 1997. Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol. 9:393. https://doi.org/10.1023/A:1007921728300
- Brown, M. R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 145:79-99. https://doi.org/10.1016/0022-0981(91)90007-J
- Brown, M. R. 2002. Nutritional value and use of microalgae in aquaculture. In Cruz-Suarez, L. E., Ricque-Marie, D., Tapia-Salazar, M., Gaxiola-Cortes, M. G. & Simoes, N. (Eds.) Advances en Nutricion Acuicola VI. Memorias del VI Simposium Internacional de Nutricion Acuicola, Universidad Autonoma de Nuevo Leon, Monterrey, pp. 281-292.
- Brown, M. R. & Jeffrey, S. W. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161:91-113. https://doi.org/10.1016/0022-0981(92)90192-D
- Buono, S., Langellotti, A. L., Martello, A., Rinna, F. & Fogliano, V. 2014. Functional ingredients from microalgae. Food Funct. 5:1669-1685. https://doi.org/10.1039/C4FO00125G
- de Salas, M. F., Bolch, C. J. S., Botes, L., Nash, G., Wright, S. W. & Hallegraeff, G. M. 2003. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J. Phycol. 39:1233-1246. https://doi.org/10.1111/j.0022-3646.2003.03-019.x
- Fabregas, J. & Herrero, C. 1985. Marine microalgae as a potential source of single cell protein (SCP). Appl. Microbiol. Biotechnol. 23:110-113. https://doi.org/10.1007/BF00938962
- Flynn, K. J. & Flynn, K. 1992. Non-protein free amines in microalgae: consequences for the measurement of intracellular amino acids and of the glutamine/glutamate ratio. Mar. Ecol. Prog. Ser. 89:73-79. https://doi.org/10.3354/meps089073
- Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A. & Bandarra, N. M. 2008. Microalgae in novel food products. In Papadopoulos, K. N. (Ed.) Food Chemistry Research Developments. Nova Science Publishers, New York, pp. 75-112.
- Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
- Guiry, M. D. & Guiry, G. M. 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Sep 10, 2018.
- Harel, M. & Clayton, D. 2004. Feed formulation for terrestrial and aquatic animals. U.S. Patent No. 20070082008(WO/2004/080196). U.S. Patent and Trademark Office, Washington, DC.
- Hayashi, T., Suitani, Y., Murakami, M., Yamaguchi, K., Konosu, S. & Noda, H. 1986. Protein and amino acid compositions of five species of marine phytoplankton. Bull. Jpn. Soc. Sci. Fish. 52:337-343. https://doi.org/10.2331/suisan.52.337
- Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V. & Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 27:1737-1746. https://doi.org/10.1007/s11274-010-0632-z
- Holmes, M. J., Brust, A. & Lewis, R. J. 2014. Dinoflagellate toxins: an overview. In Botana, L. M. (Ed.) Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection. 3rd. Vol. 1. CRC Press, Boca Raton, FL, pp. 3-38.
- Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537. https://doi.org/10.1016/j.algal.2017.06.020
- Jeong, H. J., Jang, S. H., Moestrup, O., Kang, N. S., Lee, S. Y., Potvin, E. & Noh, J. H. 2014. Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29:75-99. https://doi.org/10.4490/algae.2014.29.2.075
- Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
- Jeong, H. J., Ok, J. H., Lim, A. S., Kwon, J. E., Kim, S. J. & Lee, S. Y. 2016. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60:92-106. https://doi.org/10.1016/j.hal.2016.10.008
- Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
- Kang, N. S., Jeong, H. J., Moestrup, O., Lee, S. Y., Lim, A. S., Jang, T. Y., Lee, K. H., Lee, M. J., Jang, S. H., Potvin, É., Lee, S. K. & Noh, J. H. 2014. Gymnodinium smaydae n. sp., a new planktonic phototrophic dinoflagellate from the coastal waters of western Korea: morphology and molecular characterization. J. Eukaryot. Microbiol. 61:182-203. https://doi.org/10.1111/jeu.12098
- Kim, J. H., Jeong, H. J., Lim, A. S., Kwon, J. E., Lee, K. H., Park, K. H. & Kim, H. S. 2017. Removal of two pathogenic scuticociliates Miamiensis avidus and Miamiensis sp. using cells or culture filtrates of the dinoflagellate Alexandrium andersonii. Harmful Algae 63:133-145. https://doi.org/10.1016/j.hal.2017.02.002
- LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R. & Santos, S. R. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28:2570-2580. https://doi.org/10.1016/j.cub.2018.07.008
- Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. Y., Park, K. -T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. https://doi.org/10.1016/j.jembe.2014.05.011
- Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
- Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152. https://doi.org/10.4490/algae.2014.29.2.137
- Lim, A. S., Jeong, H. J., Kim, J. H. & Lee, S. Y. 2015. Description of the new phototrophic dinoflagellate Alexandrium pohangense sp. nov. from Korean coastal waters. Harmful Algae 46:49-61. https://doi.org/10.1016/j.hal.2015.05.004
- Lim, A. S., Jeong, H. J., Ok, J. H. & Kim, S. J. 2018. Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae). Harmful Algae 74:19-29. https://doi.org/10.1016/j.hal.2018.03.009
- Lourenco, S. O., Barbarino, E., Lavin, P. L., Marquez, U. M. L. & Aidar, E. 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-toprotein conversion factors. Eur. J. Phycol. 39:17-32. https://doi.org/10.1080/0967026032000157156
- Madrigal, R. F. D. A. G., da Silva, U. D. A. T., Tavares, C. P. D. S. & Ballester, E. L. C. 2017. Use of native and non‐native shrimp (Penaeidae, Dendrobranchiata) in world shrimp farming. Rev. Aquac. https://doi.org/10.1111/raq.12206.
- Markell, D. A. & Trench, R. K. 1993. Macromolecules exuded by symbiotic dinoflagellates in culture: amino acid and sugar composition. J. Phycol. 29:64-68. https://doi.org/10.1111/j.1529-8817.1993.tb00280.x
- Matos, J., Cardoso, C., Bandarra, N. M. & Afonso, C. 2017. Micoalgae as healthy ingredients for functional food: a review. Food Funct. 8:2672-2685. https://doi.org/10.1039/C7FO00409E
- Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579. https://doi.org/10.4319/lo.2000.45.3.0569
- Mendes, A., Reis, A., Vasconcelos, R., Guerra, P. & da Silva, T. L. 2009. Crypthecodinium cohnii with emphasis on DHA production: a review. J. Appl. Phycol. 21:199-214. https://doi.org/10.1007/s10811-008-9351-3
- Millamena, O. M., Bautista, M. N., Reyes, O. S. & Kanazawa, A. 1997. Threonine requirement of juvenile marine shrimp Penaeus monodon. Aquaculture 151:9-14. https://doi.org/10.1016/S0044-8486(96)01486-X
- Millamena, O. M., Bautista-Teruel, M. N. & Kanazawa, A. 1996. Methionine requirement of juvenile tiger shrimp Penaeus monodon Fabricius. Aquaculture 143:403-410. https://doi.org/10.1016/0044-8486(96)01270-7
- Millamena, O. M., Bautista-Teruel, M. N., Reyes, O. S. & Kanazawa, A. 1998. Requirements of juvenile marine shrimp, Penaeus monodon (Fabricius) for lysine and arginine. Aquaculture 164:95-104. https://doi.org/10.1016/S0044-8486(98)00179-3
- Millamena, O. M., Teruel, M. B., Kanazawa, A. & Teshima, S. 1999. Quantitative dietary requirements of postlarval tiger shrimp, Penaeus monodon, for histidine, isoleucine, leucine, phenylalanine and tryptophan. Aquaculture 179:169-179. https://doi.org/10.1016/S0044-8486(99)00160-X
- Muller-Feuga, A. 2013. Microalgae for aquaculture: the current global situation and future trends. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Cultures: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex, pp. 615-627.
- National Research Council. 2011. Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC, 376 pp.
- Norton, T. A., Melkonian, M. & Andersen, R. A. 1996. Algal biodiversity. Phycologia 35:308-326. https://doi.org/10.2216/i0031-8884-35-4-308.1
- Okaichi, T. 1974. Significance of amino acid composition of phytoplankton and suspensoid in marine biological production. Bull. Jpn. Soc. Sci. Fish. 40:471-478. https://doi.org/10.2331/suisan.40.471
- Onodera, K., Konishi, Y., Taguchi, T., Kiyoto, S. & Tominaga, A. 2014. Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar. Drugs 12:1773-1787. https://doi.org/10.3390/md12041773
- Oser, B. L. 1959. An integrated essential amino acid index for predicting the biological value of proteins. In Albanese, A. A. (Ed.) Amino Acid Nutrition. Academic Press, New York, pp. 295-311.
- Pulz, O. & Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635-648. https://doi.org/10.1007/s00253-004-1647-x
- Rosic, N. N. & Dove, S. 2011. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77:8478-8486. https://doi.org/10.1128/AEM.05870-11
- Roy, S. S. & Pal, R. 2015. Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc. Zool. Soc. 68:1-8. https://doi.org/10.1007/s12595-013-0089-9
- Sanchez, R. M. 1986. Rearing of misid stages of Penaeus vannamei fed cultured algae of three species. Aquaculture 58:139-144. https://doi.org/10.1016/0044-8486(86)90163-8
- Shah, M. R., Samarakoon, K. W., An, S. -J., Jeon, Y. -J. & Lee, J. -B. 2016. Growth characteristics of three benthic dinoflagellates in mass culture and their antioxidant properties. J. Fish. Aquat. Sci. 11:268-277. https://doi.org/10.3923/jfas.2016.268.277
- Shimizu, Y. 1996. Microalgal metabolites: a new perspective. Annu. Rev. Microbiol. 50:431-465. https://doi.org/10.1146/annurev.micro.50.1.431
- Singh, J. & Gu, S. 2010. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energ. Rev. 14:2596-2610. https://doi.org/10.1016/j.rser.2010.06.014
- Singh, J. & Saxena, R. C. 2015. An introduction to microalgae: diversity and significance. In Kim, S. -K. (Ed.) Handbook of Marine Microalgae: Biotechnology Advances. Academic Press, San Diego, CA, pp. 11-24.
- Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. https://doi.org/10.1263/jbb.101.87
- Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418. https://doi.org/10.1007/s10531-007-9258-3
- Teshima, S., Alam, M. S., Koshio, S., Ishikawa, M. & Kanazawa, A. 2002. Assessment of requirement values for essential amino acids in the prawn, Marsupenaeus japonicus (Bate). Aquac. Res. 33:395-402. https://doi.org/10.1046/j.1365-2109.2002.00684.x
- Zhang, T., Chi, Z. & Sheng, J. 2009. A highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for single-cell protein production and its nutritive components. Mar. Biotechnol. 11:280-286. https://doi.org/10.1007/s10126-008-9144-3
Cited by
- Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains vol.34, pp.2, 2018, https://doi.org/10.4490/algae.2019.34.6.4
- Nutritional evaluation of two marine microalgae as feedstock for aquafeed vol.51, pp.3, 2020, https://doi.org/10.1111/are.14439
- Microalgae: A Promising Source of Valuable Bioproducts vol.10, pp.8, 2018, https://doi.org/10.3390/biom10081153
- Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities vol.18, pp.8, 2018, https://doi.org/10.3390/md18080391
- Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2018, https://doi.org/10.4490/algae.2020.35.9.2
- Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.593116
- Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production vol.781, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146687