DOI QR코드

DOI QR Code

Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture

  • Lim, An Suk (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, So Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2018.07.19
  • Accepted : 2018.09.10
  • Published : 2018.09.15

Abstract

Microalgae have been utilized in diverse industries including aquaculture. Among the microalgae, dinoflagellates are known to have various bioactive compounds, and thus the interest in their application to industry has increased. In order to test their potential as food materials for aquaculture animals, the crude protein contents and compositions of amino acids of six dinoflagellates Heterocapsa rotundata (family Heterocapsaceae), Ansanella granifera (Suessiaceae), Alexandrium andersonii (Ostreopsidaceae), Takayama tasmanica (Brachidiniaceae), Takayama helix, and Gymnodinium smaydae (Gymnodiniaceae) belonging to diverse families were analyzed. The percentage of the amount of the crude protein relative to dry weight of T. tasmanica was the highest (65%) and that of A. andersonii was the lowest (26%). However, the highest percentage of total detected amino acids in crude protein was found in A. andersonii (98.2%). In all six dinoflagellates, glutamic acid was the most dominant amino acid in crude protein. However, the second main amino acid was aspartic acid for H. rotundata, A. granifera, T. helix, and G. smaydae, but were arginine and leucine for A. andersonii and T. tasmanica, respectively. Furthermore, T. tasmanica and T. helix did not have taurine and gamma-aminobutyric acid, whereas the other dinoflagellates possessed them. The percentages of essential amino acid contents of the dinoflagellates met the requirement levels for juvenile shrimps. In addition, the dinoflagellates were not toxic to the brine shrimp Artemia salina. Compared with the other microalgae reported so far, H. rotundata and A. andersonii can be used for arginine-rich diets, T. tasmanica for valine and leucine-rich diets, A. granifera for histidine-rich diets, T. helix for threonine-rich diets, and G. smaydae for lysine-rich diets. Therefore, based on their biochemical composition and toxicity to Artemia, the dinoflagellates could be used as essential amino acid sources for cultivating animals in the aquaculture industry.

Keywords

References

  1. Akiyama, D. M. 1992. Future considerations for shrimp nutrition and the aquaculture feed industry. In Wyban, J. (Ed.) Proc. Special Session on Shrimp Farming, World Aquaculture Society, Baton Rouge, LA, pp. 198-205.
  2. Andersen, R. 2013. The microalgal cell. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Cultures: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex, pp. 3-20.
  3. Becker, W. 2004. Microalgae in human and animal nutrition. In Richimond, A. (Ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd., Oxford, pp. 312-351.
  4. Bleakley, S. & Hayes, M. 2017. Algal proteins: extraction, application, and challenges concerning production. Foods 6:33. https://doi.org/10.3390/foods6050033
  5. Borowitzka, M. A. 1997. Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol. 9:393. https://doi.org/10.1023/A:1007921728300
  6. Brown, M. R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 145:79-99. https://doi.org/10.1016/0022-0981(91)90007-J
  7. Brown, M. R. 2002. Nutritional value and use of microalgae in aquaculture. In Cruz-Suarez, L. E., Ricque-Marie, D., Tapia-Salazar, M., Gaxiola-Cortes, M. G. & Simoes, N. (Eds.) Advances en Nutricion Acuicola VI. Memorias del VI Simposium Internacional de Nutricion Acuicola, Universidad Autonoma de Nuevo Leon, Monterrey, pp. 281-292.
  8. Brown, M. R. & Jeffrey, S. W. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161:91-113. https://doi.org/10.1016/0022-0981(92)90192-D
  9. Buono, S., Langellotti, A. L., Martello, A., Rinna, F. & Fogliano, V. 2014. Functional ingredients from microalgae. Food Funct. 5:1669-1685. https://doi.org/10.1039/C4FO00125G
  10. de Salas, M. F., Bolch, C. J. S., Botes, L., Nash, G., Wright, S. W. & Hallegraeff, G. M. 2003. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J. Phycol. 39:1233-1246. https://doi.org/10.1111/j.0022-3646.2003.03-019.x
  11. Fabregas, J. & Herrero, C. 1985. Marine microalgae as a potential source of single cell protein (SCP). Appl. Microbiol. Biotechnol. 23:110-113. https://doi.org/10.1007/BF00938962
  12. Flynn, K. J. & Flynn, K. 1992. Non-protein free amines in microalgae: consequences for the measurement of intracellular amino acids and of the glutamine/glutamate ratio. Mar. Ecol. Prog. Ser. 89:73-79. https://doi.org/10.3354/meps089073
  13. Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A. & Bandarra, N. M. 2008. Microalgae in novel food products. In Papadopoulos, K. N. (Ed.) Food Chemistry Research Developments. Nova Science Publishers, New York, pp. 75-112.
  14. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  15. Guiry, M. D. & Guiry, G. M. 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Sep 10, 2018.
  16. Harel, M. & Clayton, D. 2004. Feed formulation for terrestrial and aquatic animals. U.S. Patent No. 20070082008(WO/2004/080196). U.S. Patent and Trademark Office, Washington, DC.
  17. Hayashi, T., Suitani, Y., Murakami, M., Yamaguchi, K., Konosu, S. & Noda, H. 1986. Protein and amino acid compositions of five species of marine phytoplankton. Bull. Jpn. Soc. Sci. Fish. 52:337-343. https://doi.org/10.2331/suisan.52.337
  18. Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V. & Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 27:1737-1746. https://doi.org/10.1007/s11274-010-0632-z
  19. Holmes, M. J., Brust, A. & Lewis, R. J. 2014. Dinoflagellate toxins: an overview. In Botana, L. M. (Ed.) Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection. 3rd. Vol. 1. CRC Press, Boca Raton, FL, pp. 3-38.
  20. Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537. https://doi.org/10.1016/j.algal.2017.06.020
  21. Jeong, H. J., Jang, S. H., Moestrup, O., Kang, N. S., Lee, S. Y., Potvin, E. & Noh, J. H. 2014. Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29:75-99. https://doi.org/10.4490/algae.2014.29.2.075
  22. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  23. Jeong, H. J., Ok, J. H., Lim, A. S., Kwon, J. E., Kim, S. J. & Lee, S. Y. 2016. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60:92-106. https://doi.org/10.1016/j.hal.2016.10.008
  24. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  25. Kang, N. S., Jeong, H. J., Moestrup, O., Lee, S. Y., Lim, A. S., Jang, T. Y., Lee, K. H., Lee, M. J., Jang, S. H., Potvin, É., Lee, S. K. & Noh, J. H. 2014. Gymnodinium smaydae n. sp., a new planktonic phototrophic dinoflagellate from the coastal waters of western Korea: morphology and molecular characterization. J. Eukaryot. Microbiol. 61:182-203. https://doi.org/10.1111/jeu.12098
  26. Kim, J. H., Jeong, H. J., Lim, A. S., Kwon, J. E., Lee, K. H., Park, K. H. & Kim, H. S. 2017. Removal of two pathogenic scuticociliates Miamiensis avidus and Miamiensis sp. using cells or culture filtrates of the dinoflagellate Alexandrium andersonii. Harmful Algae 63:133-145. https://doi.org/10.1016/j.hal.2017.02.002
  27. LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R. & Santos, S. R. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28:2570-2580. https://doi.org/10.1016/j.cub.2018.07.008
  28. Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. Y., Park, K. -T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. https://doi.org/10.1016/j.jembe.2014.05.011
  29. Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
  30. Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152. https://doi.org/10.4490/algae.2014.29.2.137
  31. Lim, A. S., Jeong, H. J., Kim, J. H. & Lee, S. Y. 2015. Description of the new phototrophic dinoflagellate Alexandrium pohangense sp. nov. from Korean coastal waters. Harmful Algae 46:49-61. https://doi.org/10.1016/j.hal.2015.05.004
  32. Lim, A. S., Jeong, H. J., Ok, J. H. & Kim, S. J. 2018. Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae). Harmful Algae 74:19-29. https://doi.org/10.1016/j.hal.2018.03.009
  33. Lourenco, S. O., Barbarino, E., Lavin, P. L., Marquez, U. M. L. & Aidar, E. 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-toprotein conversion factors. Eur. J. Phycol. 39:17-32. https://doi.org/10.1080/0967026032000157156
  34. Madrigal, R. F. D. A. G., da Silva, U. D. A. T., Tavares, C. P. D. S. & Ballester, E. L. C. 2017. Use of native and non‐native shrimp (Penaeidae, Dendrobranchiata) in world shrimp farming. Rev. Aquac. https://doi.org/10.1111/raq.12206.
  35. Markell, D. A. & Trench, R. K. 1993. Macromolecules exuded by symbiotic dinoflagellates in culture: amino acid and sugar composition. J. Phycol. 29:64-68. https://doi.org/10.1111/j.1529-8817.1993.tb00280.x
  36. Matos, J., Cardoso, C., Bandarra, N. M. & Afonso, C. 2017. Micoalgae as healthy ingredients for functional food: a review. Food Funct. 8:2672-2685. https://doi.org/10.1039/C7FO00409E
  37. Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579. https://doi.org/10.4319/lo.2000.45.3.0569
  38. Mendes, A., Reis, A., Vasconcelos, R., Guerra, P. & da Silva, T. L. 2009. Crypthecodinium cohnii with emphasis on DHA production: a review. J. Appl. Phycol. 21:199-214. https://doi.org/10.1007/s10811-008-9351-3
  39. Millamena, O. M., Bautista, M. N., Reyes, O. S. & Kanazawa, A. 1997. Threonine requirement of juvenile marine shrimp Penaeus monodon. Aquaculture 151:9-14. https://doi.org/10.1016/S0044-8486(96)01486-X
  40. Millamena, O. M., Bautista-Teruel, M. N. & Kanazawa, A. 1996. Methionine requirement of juvenile tiger shrimp Penaeus monodon Fabricius. Aquaculture 143:403-410. https://doi.org/10.1016/0044-8486(96)01270-7
  41. Millamena, O. M., Bautista-Teruel, M. N., Reyes, O. S. & Kanazawa, A. 1998. Requirements of juvenile marine shrimp, Penaeus monodon (Fabricius) for lysine and arginine. Aquaculture 164:95-104. https://doi.org/10.1016/S0044-8486(98)00179-3
  42. Millamena, O. M., Teruel, M. B., Kanazawa, A. & Teshima, S. 1999. Quantitative dietary requirements of postlarval tiger shrimp, Penaeus monodon, for histidine, isoleucine, leucine, phenylalanine and tryptophan. Aquaculture 179:169-179. https://doi.org/10.1016/S0044-8486(99)00160-X
  43. Muller-Feuga, A. 2013. Microalgae for aquaculture: the current global situation and future trends. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Cultures: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex, pp. 615-627.
  44. National Research Council. 2011. Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC, 376 pp.
  45. Norton, T. A., Melkonian, M. & Andersen, R. A. 1996. Algal biodiversity. Phycologia 35:308-326. https://doi.org/10.2216/i0031-8884-35-4-308.1
  46. Okaichi, T. 1974. Significance of amino acid composition of phytoplankton and suspensoid in marine biological production. Bull. Jpn. Soc. Sci. Fish. 40:471-478. https://doi.org/10.2331/suisan.40.471
  47. Onodera, K., Konishi, Y., Taguchi, T., Kiyoto, S. & Tominaga, A. 2014. Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar. Drugs 12:1773-1787. https://doi.org/10.3390/md12041773
  48. Oser, B. L. 1959. An integrated essential amino acid index for predicting the biological value of proteins. In Albanese, A. A. (Ed.) Amino Acid Nutrition. Academic Press, New York, pp. 295-311.
  49. Pulz, O. & Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635-648. https://doi.org/10.1007/s00253-004-1647-x
  50. Rosic, N. N. & Dove, S. 2011. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77:8478-8486. https://doi.org/10.1128/AEM.05870-11
  51. Roy, S. S. & Pal, R. 2015. Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc. Zool. Soc. 68:1-8. https://doi.org/10.1007/s12595-013-0089-9
  52. Sanchez, R. M. 1986. Rearing of misid stages of Penaeus vannamei fed cultured algae of three species. Aquaculture 58:139-144. https://doi.org/10.1016/0044-8486(86)90163-8
  53. Shah, M. R., Samarakoon, K. W., An, S. -J., Jeon, Y. -J. & Lee, J. -B. 2016. Growth characteristics of three benthic dinoflagellates in mass culture and their antioxidant properties. J. Fish. Aquat. Sci. 11:268-277. https://doi.org/10.3923/jfas.2016.268.277
  54. Shimizu, Y. 1996. Microalgal metabolites: a new perspective. Annu. Rev. Microbiol. 50:431-465. https://doi.org/10.1146/annurev.micro.50.1.431
  55. Singh, J. & Gu, S. 2010. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energ. Rev. 14:2596-2610. https://doi.org/10.1016/j.rser.2010.06.014
  56. Singh, J. & Saxena, R. C. 2015. An introduction to microalgae: diversity and significance. In Kim, S. -K. (Ed.) Handbook of Marine Microalgae: Biotechnology Advances. Academic Press, San Diego, CA, pp. 11-24.
  57. Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. https://doi.org/10.1263/jbb.101.87
  58. Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418. https://doi.org/10.1007/s10531-007-9258-3
  59. Teshima, S., Alam, M. S., Koshio, S., Ishikawa, M. & Kanazawa, A. 2002. Assessment of requirement values for essential amino acids in the prawn, Marsupenaeus japonicus (Bate). Aquac. Res. 33:395-402. https://doi.org/10.1046/j.1365-2109.2002.00684.x
  60. Zhang, T., Chi, Z. & Sheng, J. 2009. A highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for single-cell protein production and its nutritive components. Mar. Biotechnol. 11:280-286. https://doi.org/10.1007/s10126-008-9144-3

Cited by

  1. Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains vol.34, pp.2, 2018, https://doi.org/10.4490/algae.2019.34.6.4
  2. Nutritional evaluation of two marine microalgae as feedstock for aquafeed vol.51, pp.3, 2020, https://doi.org/10.1111/are.14439
  3. Microalgae: A Promising Source of Valuable Bioproducts vol.10, pp.8, 2018, https://doi.org/10.3390/biom10081153
  4. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities vol.18, pp.8, 2018, https://doi.org/10.3390/md18080391
  5. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2018, https://doi.org/10.4490/algae.2020.35.9.2
  6. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.593116
  7. Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production vol.781, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146687