Ultra-fast densification of highly transparent Y2O3 ceramic with La2O3 as sintering aid by spark plasma sintering

  • Park, Cheol Woo (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Park, Jae Hwa (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Kang, Hyo Sang (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Lee, Hee Ae (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Lee, Joo Hyung (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • In, Jun Hyeong (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Shim, Kwang Bo (Division of Advanced Materials Science and Engineering, Hanyang University)
  • 발행 : 2018.10.01

초록

Highly transparent $Y_2O_3$ ceramics were produced using spark plasma sintering (SPS) at $1600^{\circ}C$ and 30 MPa for 5 min. When the SPS process was applied with various amounts of $La_2O_3$ as dopant. The specimen doped with 3 mol% $La_2O_3$ showed the highest density, and rapid particle growth and pore growth occurred, exhibiting that the relative density and average grain size are 99.2% and $17.2{\mu}m$, respectively. The specimen showed excellent transmittance of 79.44% in the visible light region (600 nm), resulting that $La_2O_3$ would be a useful dopant for improving the transmittance and mechanical properties of transparent $Y_2O_3$ ceramics produced with SPS.

키워드

참고문헌

  1. J.R. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, Jpn. J. Appl. Phys. Part 2-Letters 41 (2002) L1373. https://doi.org/10.1143/JJAP.41.L1373
  2. M. Ivanov, Y. Kopylov, V. Kravchenko, L. Jiang, A. Medvedev, PAN Yubai, J. Rare. Earths 32 (2014) 254. https://doi.org/10.1016/S1002-0721(14)60060-0
  3. W.J. Tropf, M.E. Thomas, R.K. Frazer, SPIE 5078 (2003) 80-89.
  4. S.F. Wang, J. Zhang, D.W. Luo, et al., Prog. Solid State Chem. 41 [1-2] (2013) 20-54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002
  5. P. Hogan, T. Stefanil, C. Willingham, R. Gentilman, 10th DoD Electromagnetic Windows Symposium (2004).
  6. L. An, A. Ito, T. Goto, J. Eur. Ceram. Soc. 32 (2012) 1035-1040. https://doi.org/10.1016/j.jeurceramsoc.2011.11.023
  7. K. Serivalsatit, B. Kokuoz, B. Yazgan-Kokuoz, M. Kennedy, J. Ballatow, J. Am. Ceram. Soc. 93 (2010) 1320.
  8. C.B. Willingham et al., SPIE Proc. 5078 (2003) 179.
  9. S.R. Podowitz, R. Gaume, R.S. Feigelson, J. Am. Ceram. Soc. 93 (2010) 82-88. https://doi.org/10.1111/j.1551-2916.2009.03350.x
  10. J. Wang, J. Ma, J. Zhang, P. Liu, D. Luo, D. Yin, D. Tang, L.B. Kong, Opt. Mater. 71 (2017) 117-120. https://doi.org/10.1016/j.optmat.2016.04.029
  11. J. Mouzon, A. Maitre, L. Frisk, N. Lehto, M. Oden, J. Eur. Ceram. Soc. 29 (2009) 311-316. https://doi.org/10.1016/j.jeurceramsoc.2008.03.022
  12. T. Ikegami, J.G. Ji, T. Mori, Y. Moriyoshi, J. Am. Ceram. Soc. 85 (2002) 1725-1729.
  13. L.L. Jin, G.H. Zhou, S. Shimai, J. Zhang, S.W. Wang, J. Eur. Ceram. Soc. 30 (2010) 2139-2143. https://doi.org/10.1016/j.jeurceramsoc.2010.04.004
  14. Y.H. Huang, D.L. Jiang, J.X. Zhang, Q.L. Lin, J. Am. Ceram. Soc. 92 (2009) 2883-7. https://doi.org/10.1111/j.1551-2916.2009.03312.x
  15. K.H. Kim, J.H. Chae, J.S. Park, J.P. Ahna, K.B. Shim, J. Ceram. Proc. Res. 10 (2009) 716-720.
  16. K.H. Kim, K.B. Shim, Mater. Charact. 50 (2003) 31-37. https://doi.org/10.1016/S1044-5803(03)00055-X
  17. S.H. Shim, J.W. Yoon, K.B. Shim, J. Matsushita, B. S. Hyun, S.G. Kang, J. Alloy. Compd. 413 (2006) 188-192. https://doi.org/10.1016/j.jallcom.2005.03.116
  18. J.R. Groza, A. Zavaliangos, Mater. Sci. Eng. A287 (2000) 171-177.
  19. M. Omori, T. Isobe, T. Hirai, J. Am. Ceram. Soc. 83 (2000) 2878-2880.
  20. L. Gao, Z. Shen, H. Miyamoto, M. Nygren, J. Am. Ceram. Soc. 82 (1999) 1061. https://doi.org/10.1111/j.1151-2916.1999.tb01874.x
  21. C.W. Park, J.H. Lee, S.H. Kang, J.H. Park, H.M. Kim, H.S. Kang, H.A. Lee, J.H. Lee, K.B. Shim, J. Ceram. Proc. Res. 18 (2017) 183-187.
  22. C. Greskovich, K.N. Woods, J. Am. Ceram. Soc. Bull. 52 (1973) 473.
  23. X.R. Hou, S.M. Zhou, Y.K. Li, W.J. Li, Opt. Mater. 32 (2010) 920-923. https://doi.org/10.1016/j.optmat.2010.01.024
  24. K. Majima, N. Niimi, M. Watanabe, S. Katsuyama, H. Nagai, J. Jpn. Inst. Met. 57 (1993) 1221-1226. https://doi.org/10.2320/jinstmet1952.57.10_1221
  25. Ikesue, K. Kamata, K. Yoshida, J. Am. Ceram. Soc. 79 (1996) 359-364. https://doi.org/10.1111/j.1151-2916.1996.tb08129.x
  26. X. Li, X. Mao, M. Feng, S. Qi, B. Jiang, L. Zhang, J. Eur. Ceram. Soc. 36 (2016) 2549-2553. https://doi.org/10.1016/j.jeurceramsoc.2016.03.024
  27. Q. Yi, S. Zhou, H. Teng, H. Lin, X. Hou, T. Ji, J. Eur. Ceram. Soc. 32 (2012) 381-388. https://doi.org/10.1016/j.jeurceramsoc.2011.09.015
  28. L. Zhang, Z. Huang, W. Pan, J. Am. Ceram. Soc. 98 (2015) 824-828. https://doi.org/10.1111/jace.13354
  29. R.W. Rice, J. Mater. Sci. 31 (1996) 1969-1983. https://doi.org/10.1007/BF00356616
  30. F.P. Knudsen, J. Am. Ceram. Soc. 42 (1959) 367-387. https://doi.org/10.1111/j.1151-2916.1959.tb13594.x
  31. R.W. Rice, J. Mater. Sci. 28 (1993) 2187-2190. https://doi.org/10.1007/BF00367582
  32. B. Ahmadi, S.R. Reza, M.A. Vadeqani, M. Barekat, Ceram. Int. 42 (2016) 17081-17088. https://doi.org/10.1016/j.ceramint.2016.07.218