DOI QR코드

DOI QR Code

Dynamic Analysis of Automotive Firm's Convergence Patents using Social Network Analysis

소셜네트워크분석을 이용한 자동차 기업 융합특허의 동태적 변화 분석

  • 박은영 (주식회사 윕스 기획마케팅부) ;
  • 고명주 (한국과학기술정보연구원 슈퍼컴퓨팅연구본부) ;
  • 조근태 (성균관대학교 시스템경영공학과/기술경영전문대학원)
  • Published : 2018.08.31

Abstract

In the era of the 4th Industrial Revolution, it is important for companies to understand the changing environment by converging various technologies and to respond to the changing business environment. In this study, we conducted a social network analysis on 10 firms in the automotive industry, which have recently been accelerating their competition for technology development, by extracting convergence patents co-classified in two or more of the US registered patents in the last 6 years. As a result, it has been confirmed that the number of technology related to the convergence of the automotive field is greatly increasing, and the convergence between the technologies is becoming stronger. In addition, Volkswagen, Ford and Hyundai showed significant changes in technology convergence. They were analyzed as having a change in strategy in eco-friendly automotive technologies. This study suggests various ways for companies to utilize the results of network analysis more meaningfully.

4차 산업혁명의 시대에 기업들은 다양한 기술들이 복잡하게 융합하면서 진화하는 기술 환경을 이해하고 이로 인한 비즈니스 환경의 변화에 대응하는 것이 중요하다. 이를 위해 본 연구에서는 최근 기술개발 경쟁이 가속화되고 있는 자동차 분야의 10대 기업을 대상으로, 이들의 최근 6년간 미국등록특허 중 2개 이상의 이종 기술 분야에 동시 분류된 융합특허를 추출하여 소셜네트워크 분석을 수행하였다. 그 결과, 자동차 분야의 융합에 관계된 기술의 수가 크게 증가하고 있으며, 기술간 융합이 더욱 강하게 이루어지고 있음을 확인하였다. 또한 Volkswagen, Ford, Hyundai 등 3개 기업은 기술융합의 변화가 큰 기업으로, 특히 친환경 자동차 관련 기술에서 전략의 변화가 있는 것으로 분석되었다. 본 연구는 기업들이 네트워크 분석의 결과를 더욱 의미있게 활용할 수 있는 다양한 방법을 제시한 점에서 연구의 의의가 있다.

Keywords

References

  1. 김철현 (2013), "기술기반 기업의 유망 서비스 영역 탐색", 대한안전경영과학회지, 제15권 제4호, pp. 407-416. https://doi.org/10.12812/ksms.2013.15.4.407
  2. 박은영, 윤혜선, 김태영, 오동률, 조근태 (2016), "글로벌 자동차 기업의 특허포트폴리오에 관한 실증연구", 기술혁신학회지, 제19권 제2호, pp. 280-301.
  3. 박준형, 곽기영 (2013), "특허 인용 관계가 기업 성과에 미치는 영향: 소셜네트워크 분석 관점", 지능정보연구, 제19권 제3호, pp. 127-139. https://doi.org/10.13088/jiis.2013.19.3.127
  4. 서동혁, 최윤희, 김경유, 김상훈, 황원식 (2015), 산업 패러다임 변화에 따른 미래 제조업의 발전 전략, 산업연구원
  5. 손동원 (2002), 사회 네트워크 분석, 경문사.
  6. 이재관 (2018), "자율주행차 산업기술 방향과 과제", 한국통신학회지, 제35권 제5호, pp.13-20.
  7. 조용래, 김의석 (2014), "특허 네트워크와 전략지표 분석을 통한 기업 기술융합 전략 연구", 지식재산연구, 제9권 제4호, pp. 191-221.
  8. Albert, M. B., D. Avery, F. Narin and P. McAllister (1991), "Direct Validation of Citation Counts as Indicators of Industrially Important Patents", Research Policy Vol. 20, No. 3, pp. 251-259. https://doi.org/10.1016/0048-7333(91)90055-U
  9. Bauer, J. M., Weijnen, M. P. C., Turk, A. L., and P. M. Herder (2003), Delineating the Scope of Convergence in Infrastructures: New Frontiers for Competition, in: Thissen, W. A. H. & Herder, P. M. (Eds.), Critical Infrastructures: State of the Art in Research and Application, Kluwer.
  10. Curran C. S. and J. Leker (2011), "Patent indicators for monitoring convergence - examples from NFF and ICT", Technological Forecasting & Social Change Vol. 78, pp. 256-273. https://doi.org/10.1016/j.techfore.2010.06.021
  11. Ernst, H. (2003), "Patent information for strategic technology management", World Patent Information Vol. 25, No. 3, pp. 233-242. https://doi.org/10.1016/S0172-2190(03)00077-2
  12. Gambrardella A. and S. Torrisi (1998), "Does technological convergence imply convergence in markets? Evidence from the electronics industry", Research Policy, Vol. 27, No. 5, pp. 445-463. https://doi.org/10.1016/S0048-7333(98)00062-6
  13. Grilliches, Z. (1990), "Patent statistics as economic indicators: A survey", Journal of Economic Literature Vol. 28, No. 4, pp. 1661-1707.
  14. Han Y. and Y. Park (2006), "Patent network analysis of inter-industrial knowledge flows: The case of Korea between traditional and emerging industries", World Patent Information Vol. 28, pp. 235-247. https://doi.org/10.1016/j.wpi.2006.01.015
  15. Hacker, K. & E. Jopling (2003), Technology convergence driving business model collision, Gartner Group.
  16. Hacklin F., Marxt C. and F. Fahrni (2009), "Coevolutionary cycles of convergence: An extrapolation from the ICT industry", Technological Forecasting & Social Change, Vol. 76, pp. 723-736. https://doi.org/10.1016/j.techfore.2009.03.003
  17. Huisman M. and M. A. van Duijn (2005), Software for social network analysis, In: Carrington PJ, Scott J, Wasserman S, editors. Models and methods in social network analysis. Cambridge University Press.
  18. Jeong D., Cho K. Park S. and S. Hong (2016), "Effects of knowledge diffusion on international joint research and science convergence: Muliple case studies in the fields of lithium-ion battery, fuel cell and wind power", Technological Forecasting & Social Change, Vol. 108, pp. 15-27. https://doi.org/10.1016/j.techfore.2016.03.017
  19. Jun S. and S. Park (2013), "Examining technological innovation of Apple using patent analysis", Industrial Management & Data Systems, Vol. 113, No. 6, pp. 890-907. https://doi.org/10.1108/IMDS-01-2013-0032
  20. Karvonen M. and T. Kassi (2011), "Impact of science on technology applications in converging technological environments", PICMET conference, Portland.
  21. Karvonen M. and T. Kassi (2013), "Patent citations as a tool for analysing the early stages of convergence", Technological Forecasting & Social Change Vol. 80, pp. 1094-1107. https://doi.org/10.1016/j.techfore.2012.05.006
  22. Kim C., Jeon J. and M. Kim (2015), "Identification and Management of opportunities for technology-based services: a patent-based portfolio approach", Innovation: Management, Policy & Practice, Vol. 17, No. 2, pp. 232-249. https://doi.org/10.1080/14479338.2015.1015671
  23. Kim M. and C. Kim (2012), "On A Patent Analysis Method for Technological Convergence", Procedia - Social and Behavioral Sciences, Vol. 40, pp. 657-663. https://doi.org/10.1016/j.sbspro.2012.03.245
  24. Kim J., Jun S., Jang D. and S. Park (2017) "An integrated social network mining for product-based technology analysis of Apple", Industrial Management & Data Systems, Vol. 117, Issue 10, pp. 2417-2430. https://doi.org/10.1108/IMDS-10-2016-0441
  25. Klaus S. (2016), The Fourth Industrial Revolution, World Economic Forum.
  26. Lee W., Han E. and S. Sohn (2015), Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents, Technological Forecasting and Social Change, Vol. 100, pp. 317-329. https://doi.org/10.1016/j.techfore.2015.07.022
  27. Narin, F. (1994), "Patent bibliometrics", Scientometrics Vol. 30, No. 1, pp. 1147-1155.
  28. Nelson, A. J. (2009), "Measuring Knowledge Spillovers: What Patents, Licenses and Publications Reveal about Innovation Diffusion", Research Policy, Vol. 38, No. 6, pp. 994-1005. https://doi.org/10.1016/j.respol.2009.01.023
  29. OECD (1994), The Measurement of Scientific and Technological Activities: Using Patent Data as Science and Technology Indicators.
  30. OECD (2009), OECD Patent Statics Manual.
  31. Mayer M. (2000), "Does science push technology? Patents citing scientific literature", Research Policy, Vol. 29, No. 3, pp. 409-434. https://doi.org/10.1016/S0048-7333(99)00040-2
  32. Murray J. (2006), Oxford Dictionary of English, Oxford University Press.
  33. Phelps C. C. (2010), "A Longitudinal Study of the Influence of Alliance Network Structure and Composition on Firm Exploratory Innovation", Academy of Management Journal, Vol. 53, No. 4, pp. 890-913. https://doi.org/10.5465/amj.2010.52814627
  34. Shepard, S. (2002), Telecommunications convergence: how to bridge the gap between technologies and services, McGraw-Hill.
  35. Steinbock, D. (2005), The mobile revolution: the making of mobile services worldwide, Kogan Page.
  36. Sternitzke C., Bartkowski A. and R. Schramm (2008), "Visualizing patent statistics by means of social network analysis tools", World Patent Information, Vol. 30, pp. 115-131. https://doi.org/10.1016/j.wpi.2007.08.003
  37. 한국일보, 2017. 2. 24, 현대차, 수소차 상용화 날개 달다.
  38. 日刊工業新聞, 2016. 7. 27, 光産業創成大.浜松ホトニクス, トヨタと共同で核融合燃料の高効率加熱に成功.