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ON CHARACTERIZATIONS OF THE INVERSE WEIBULL

DISTRIBUTION BASED ON RECORD VALUES
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Abstract. In this paper, we obtain characterizations of the inverse Weibull

distribution based on ratios of lower record values by the property of inde-
pendence. Main Facts.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent identically distributed random
variables with cumulative distribution function(cdf) F (x) and probability den-
sity function(pdf) f(x). Let Yn = min{X1, X2, . . . , Xn} for n ≥ 1. We say Xj is
a lower record value of this sequence, if Yj < Yj−1 for j > 1. The indices at which
the lower record values occur are given by the record times {L(n), n ≥ 1}, where
L(n) = min{j | j > L(n− 1), Xj < XL(n−1), n ≥ 2} with L(1) = 1. We assume
that all lower record values XL(i) for i ≥ 1 occur at a sequence {Xn, n ≥ 1} of
i.i.d. random variables.

A continuous random variable X is called the inverse Weibull distribution
with parameters c > 0, α > 0 if the corresponding probability cdf F (x) of X is
given by

F (x) =

{
e−cx

−α

, x > 0, c > 0, α > 0,

0, otherwise.

The current investigation was induced by the characterizations of Weibull dis-
tribution in [3]. They proved that F (x) has a Weibull distribution if and only if
XU(m)/XU(n) and XU(n) or XU(n)/(XU(n) ±XU(m)) and XU(n) are independent
for 1 ≤ m < n.
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In this paper we extend the result of Lee and Lim [3] and obtain characteri-
zations of the inverse Weibull distribution by the independence property on the
lower record values.

2. Results

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed nonnegative random variables with cdf F (x) which is absolutely con-

tinuous with pdf f(x) and F (x) < 1 for all x > 0. Then F (x) = e−cx
−α

for all
x > 0 and c > 0, α > 0, if and only if XL(n)/XL(m) and XL(n) are independent
for 1 ≤ m < n.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed nonnegative random variables with cdf F (x) which is absolutely con-

tinuous with pdf f(x) and F (x) < 1 for all x > 0. Then F (x) = e−cx
−α

for all
x > 0 and c > 0, α > 0, if and only if XL(n)/(XL(n) +XL(m)) and XL(n) are
independent for 1 ≤ m < n.

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed nonnegative random variables with cdf F (x) which is absolutely con-

tinuous with pdf f(x) and F (x) < 1 for all x > 0. Then F (x) = e−cx
−α

for all
x > 0 and c > 0, α > 0, if and only if XL(n)/(XL(m) −XL(n)) and XL(n) are
independent for 1 ≤ m < n.

3. Proofs

Proof of Theorem 2.1. The joint pdf fm,n(x, y) of XL(m) and XL(n) is

fm,n(x, y) =
H(x)m−1

Γ(m)
h(x)

{H(y)−H(x)}n−m−1

Γ(n−m)
f(y)

where H(x) = − lnF (x) and h(x) = − d
dxH(x) = f(x)

F (x) , for 1 ≤ m < n.

Consider the functions U = XL(n)/XL(m) and W = XL(n). It follows that

xL(m) = w/u , xL(n) = w and J = −w/u2. Thus we can write the joint pdf
fu,w(u,w) of U and W as

fU,W (u,w) =
H(wu )m−1

Γ(m)
h

(
w

u

){H(w)−H(wu )}n−m−1

Γ(n−m)
f(w)

w

u2

for 0 < u < 1 , w > 0. If F (x) = e−cx
−α

for all x > 0 , α > 0 , c > 0, then we
get

fU,W (u,w) =
cnα2

Γ(m)Γ(n−m)
uαm−1(1− uα)n−m−1w−αn−1e−cw

−α

(1)
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for all 0 < u < 1, w > 0 and α > 0. After integrating (1) with respect to W , we
get

fU (u) =

∫ ∞
0

fU,W (u,w)dw

=
cnα2

Γ(m)Γ(n−m)
uαm−1(1− uα)n−m−1

∫ ∞
0

w−αn−1e−cw
−α

dw

=
Γ(n)α

Γ(m)Γ(n−m)
uαm−1(1− uα)n−m−1

(2)

for all 0 < u < 1, α > 0, and c > 0. Also, the pdf fW (w) of W is given by

fW (w) =
H(w)n−1

Γ(n)
f(w) =

cnα

Γ(n)
w−αn−1e−cw

−α

. (3)

From (1), (2) and (3), we obtain fU,W (u,w) = fU (u)fW (w). Hence U and W
are independent for 1 ≤ m < n.

Now we will prove the sufficient condition. Let us use the transformation
U = XL(n)/XL(m) and W = XL(n). The Jacobian of the transformation is

J = −w/u2. Thus we can write the joint pdf fU,W (u,w) of U and W as

fU,W (u,w) =
H(wu )m−1

Γ(m)
h

(
w

u

){H(w)−H(wu )}n−m−1

Γ(n−m)
f(w)

w

u2
(4)

for all 0 < u < 1 and w > 0. The pdf fW (w) of W is given by

fW (w) =
H(w)n−1

Γ(n)
f(w) (5)

for all w > 0. Since U and W are independent, we get the pdf fU (u) of U from
(4) and (5) as

fU (u) =
Γ(n)

Γ(m)Γ(n−m)

{H(wu )}m−1h(wu ){H(w)−H(wu )}n−m−1

H(w)n−1
w

u2

=
Γ(n)

Γ(m)Γ(n−m)

{
H(wu )

H(w)

}m−1{
1−

H(wu )

H(w)

}n−m−1
∂

∂u

(
H(wu )

H(w)

)
=

Γ(n)

Γ(m)Γ(n−m)

{
lnF (wu )

lnF (w)

}m−1{
1−

lnF (wu )

lnF (w)

}n−m−1
∂

∂u

(
lnF (wu )

lnF (w)

)
where H(x) = − lnF (x) and h(x) = − d

dxH(x).
By [2, Lemma, p.48], the pdf fU (u) of U is a function of u only. Thus we

have

lnF (w/u) = G(u) lnF (w) (6)

where G(u) is a function of u only.
By the theory of functional equation [1], the only continuous solution of (6)

with the boundary conditions limx→0+ F (x) = 0 and F (∞) = 1 is F (x) = e−cx
−α

for all x > 0 , c > 0 , α > 0. This completes the proof. �
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Proof of Theorem 2.2. The necessary condition is easy to establish. Now we
prove the sufficient condition.

Let us use the transformation U = XL(n)/(XL(n) +XL(m)), W = XL(n). The

Jacobian of the transformation is J = −w/u2. Thus we can write the joint pdf
fU,W (u,w) of U and W as

fU,W (u,w)

=
H(w(1−u)

u )m−1

Γ(m)
h

(
w(1− u)

u

)
[H(w)−H(w(1−u)

u )n−m−1]

Γ(n−m)
f(w)

w

u2

(7)

for 0 < u < 1 and w > 0. The pdf fW (w) of W is given by

fW (w) =
H(w)n−1

Γ(n)
f(w) for w > 0 (8)

Since U and W are independent, we get the pdf fU (u) of U form (7) and (8) as

fU (u) =
Γ(n)

Γ(m)Γ(n−m)

{
H(w(1−u)

u )

H(w)

}m−1{
1−

H(w(1−u)
u )

H(w)

}n−m−1
× ∂

∂u

(
H(wu (1− u))

H(w)

)
=

Γ(n)

Γ(m)Γ(n−m)

{
lnF (w(1−u)

u )

lnF (w)

}m−1{
1−

lnF (w(1−u)
u )

lnF (w)

}n−m−1
× ∂

∂u

(
lnF (w(1−u)

u )

lnF (w)

)
where H(x) = − lnF (x) and h(x) = − d

dxH(x).
By [2, Lemma, p.48], the pdf fU (u) of U is a function of u only. Thus we

have
lnF (w(1− u)/u) = G(u) lnF (w) (9)

where G(u) is a function of u only.
By the theory of functional equation [1], the only continuous solution of (9)

with the boundary conditions limx→0+ F (x) = 0 and F (∞) = 1 is F (x) = e−cx
−α

for all x > 0 , c > 0 , α > 0. This completes the proof. �

Proof of Theorem 2.3. The necessary condition is easy to establish. Now
we prove the sufficient condition.

Let us use the transformation V = XL(n)/(XL(m) −XL(n)), W = XL(n). The

Jacobian of the transformation is J = −w/v2. Thus we can write the joint pdf
fV,W (v, w) of V and W as

fV,W (v, w)

=
H(w(1+v)

v )m−1

Γ(m)
h

(
w(1 + v)

v

)
[H(w)−H(w(1+v)

v )n−m−1]

Γ(n−m)
f(w)

w

v2

for v > 0, w > 0. The rest of the proof is similar to that of Theorem 2.2.. �
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