J. Appl. Math. & Informatics Vol. **36**(2018), No. 5 - 6, pp. 419 - 428 https://doi.org/10.14317/jami.2018.419

UPPER BOUND OF THE CARDINALITY OF E-POWERED NUMBERS OF DIGITS

KYUNG HO JEONG, JISUK SO, SOEUN KIM* AND DAEYEOUL KIM

ABSTRACT. Let us think of adding each digit of a natural number, in bases b, that are e-powered. By studying for a number becoming greater than or equal to oneself, we will consider values of $\lim_{b\to\infty} \frac{N(e,b)}{h^e}$.

AMS Mathematics Subject Classification : 11A63, 11A25. *Key words and phrases* : Squares of digits, sums.

1. Introduction

Let $\mathbb{N} := \{1, 2, 3, \dots\}$ be the set of natural numbers, $\mathbb{N}_0 := \mathbb{N} \bigcup \{0\}$.

If b is a natural number that is greater than or equal to 2 and e is also a natural number. Let $S_{e,b} : \mathbb{N} \to \mathbb{N}$ map each positive integer to the sum of the e-th powers of its base b digits. Then the natural number $x = \sum_{i=0}^{n} a_i b^i$, where a_i are integers $0 \le a_i \le b-1$, $a_n \ne 0$ with $n \in \mathbb{N}_0$. For $x = a_n a_{n-1} \dots a_1 a_{0(b)}$, we define $S_{e,b}(x) = \sum_{i=0}^{n} a_i^e$. See [2]. We will give examples as follows Table 1.

A positive integer x is called the abundant (resp. stable) number according as $S_{e,b}(x) > x$, (resp. = x). Among the abundant number, the largest value of x is called the greatest abundant number. Moreover, among the abundant and stable number, the largest value of x is called the greatest number.

If e is given and b increases infinitely, then we consider the cardinality of abundant number and the ratio of b^e . In other words, when N(e, b) is defined as the cardinality of abundant number in the operation for the addition of e-powered in base b, does the value of

$$\lim_{b \to \infty} \frac{(Cardinality \ of \ abundant \ number)}{b^e} = \lim_{b \to \infty} \frac{N(e,b)}{b^e}$$

exist?

Received March 7, 2018. Revised July 20, 2018. Accepted August 3, 2018. $\ ^* {\rm Corresponding}$ author.

^{© 2018} Korean SIGCAM and KSCAM.

Daeyeoul Kim, Jisuk So, Soeun Kim*, Kyung ho Jeong

b, e	x = 6	$S_{e,b}(x)$
$b = 2, \ 1 \le e \le 6$	$x = 110_{(2)}$	$S_{e,2}(x) = 2$
$b=3, 1 \le e \le 6$	$x = 20_{(3)}$	$S_{1,3}(x) = 2, \ S_{2,3}(x) = 4, \ S_{3,3}(x) = 8$
		$S_{4,3}(x) = 16, \ S_{5,3}(x) = 32, \ S_{6,3}(x) = 64$
$b=4, 1 \le e \le 6$	$x = 12_{(4)}$	$S_{1,4}(x) = 3, \ S_{2,4}(x) = 5, \ S_{3,4}(x) = 9$
		$S_{4,4}(x) = 17, \ S_{5,4}(x) = 33, \ S_{6,4}(x) = 65$
$b=5, 1 \le e \le 6$	$x = 11_{(5)}$	$S_{e,5}(x) = 2$
$b = 6, \ 1 \le e \le 6$	$x = 10_{(6)}$	$S_{e,6}(x) = 1$
$b=7, 1 \le e \le 6$	$x = 6_{(7)}$	$S_{1,7}(x) = 6, \ S_{2,7}(x) = 36, \ S_{3,7}(x) = 216$
		$S_{4,7}(x) = 1296, \ S_{5,7}(x) = 7776, \ S_{6,7}(x) = 46656$
TABLE 1. Examples of $S_{e,b}(x), 2 \le b \le 7, 1 \le e \le 6$		

Our main goal of this article is to prove a upper bound of abundant number as $b \to \infty$. More precisely, we prove the following theorem.

Theorem 1.1. Let N(e, b) be the cardinality of x satisfying $x < S_{e,b}(x)$. Then,

$$\lim_{b \to \infty} \frac{N(e,b)}{b^e} = \frac{1}{2} \sum_{a_e=0}^{e-2} \int_0^1 \int_0^1 \cdots \int_0^1 \left(|y-1| - y + 1 \right) dx_1 dx_2 \cdots dx_{e-1}.$$

Here,

$$y = \left(\frac{|a_e + x_{e-1} - \sum_{i=1}^{e-1} x_i^e| + a_e + x_{e-1} - \sum_{i=1}^{e-1} x_i^e}{2}\right)^{\frac{1}{e}}$$

This paper is organized as follows. In section 2, we give lemma for proving Theorem 1.1 and Theorem 2.2. In section 3, we give the proof of Theorem 1.1. A few note related references are [1], [3], [4], [5] and [6].

2. Case of the square

To prove our Theorem 1.1 and Theorem 2.2, we need the following lemma.

Lemma 2.1 ([7, Lemma 3.1]). Let b > 2, $e \in \mathbb{N} - \{1\}$ and $x = \sum_{i=0}^{n} a_i b^i$ with $0 \le a_i \le b - 1$, $a_n \ne 0$. If $x \le S_{e,b}(x)$ then $x < (e - 1) b^e$.

Now, we consider the cardinality of abundant numbers when b tends to infinity with e = 2.

Theorem 2.2. Let N(2,b) be the cardinality of x satisfying $x < S_{2,b}(x)$. Then,

$$\lim_{b \to \infty} \frac{N(2,b)}{b^2} = 1 - \frac{\pi}{8}.$$

Proof. By Lemma 2.1, if $x \leq S_{2,b}(x)$ then $x < b^2$. Take x = kb + c, for k and c are nonnegative integers that less than or equal to b - 1. We note that $x \leq S_{2,b}(x)$ if and only if $kb + c \leq k^2 + c^2$. Thus, we obtain

$$\left(k - \frac{b}{2}\right)^2 + \left(c - \frac{1}{2}\right)^2 \ge \left(\frac{b}{2}\right)^2 + \left(\frac{1}{2}\right)^2. \tag{1}$$

Naturally, we can picture of a square containing a diagonal line, which connects the origin and a point (b-1, b-1) by assuming that k is the x-coordinate and c is the y-coordinate by (1) (see Figure 1). Then, the integer ordered pairs within the boundary or on the boundary of a square are overlapped with a circle, $\left(x-\frac{b}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 = \left(\frac{b}{2}\right)^2 + \left(\frac{1}{2}\right)^2$. Among the ordered pairs, pairs that are out of the circle indicate the abundant number, $x < S_{2,b}(x)$ and the pairs is the stable number on the boundary of a circle except the origin indicate $x = S_{2,b}(x)$. Thus, the cardinality of abundant number is the amount of integer ordered pairs on the within the square and out of the circle excluding the boundary.

FIGURE 1. The area of $x \leq S_{2,b}(x)$

The area of $x < S_{2,b}(x)$ is

(Area of a square) – (Area of half circle) < (Area of $x < S_{2,b}(x)$) < (Area of a square) – (Area of half circle)+(b-1).

Since

(Area of a square) – (Area of half circle)= $b(b-1) - \frac{1}{2} \cdot \pi \cdot \left((\frac{b}{2})^2 + (\frac{1}{2})^2 \right)$, we obtain

 $\frac{b\,(b-1) - \frac{1}{2} \cdot \pi \cdot \left((\frac{b}{2})^2 + (\frac{1}{2})^2 \right) < N(2,b) < b\,(b-1) - \frac{1}{2} \cdot \pi \cdot \left((\frac{b}{2})^2 + (\frac{1}{2})^2 \right) + (b-1)\,.$

Thus, if b is large enough, then

$$\lim_{b \to \infty} \frac{N(2,b)}{b^2} = 1 - \frac{\pi}{8}.$$

This is completed the proof of Theorem 2.2.

Example 2.3. In base 10, if x = 10k + c, then

$$x < S_{2,10}(x) \Leftrightarrow 10k + c < k^2 + c^2$$

 $\Leftrightarrow (k-5)^2 + \left(c - \frac{1}{2}\right)^2 > 25 + \left(\frac{1}{4}\right).$

FIGURE 2. Sum of squares in base 10, when $x \leq S_{2,10}(x)$

With base 10, (0, 9) is the farthest point from the origin of the circle and the amount of abundant number is 50 (see Figure 2).

Remark 2.1. By Theorem 1.1, in base *b*, if x = kb + c then the inequality satisfied with $x < S_{2,b}(x)$ is $\left(k - \frac{b}{2}\right)^2 + \left(c - \frac{1}{2}\right)^2 > \left(\frac{b}{2}\right)^2 + \left(\frac{1}{2}\right)^2$.

At this time the farthest point from the origin of the circle is (0, b - 1) and we obtain that

$$S_{2,b}(x) - x = \left(k - \frac{b}{2}\right)^2 + \left(c - \frac{1}{2}\right)^2 - \left(\left(\frac{b}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right)$$

= Square of (distance between a point indicating oneself and the

center of a circle) – Square of (length of radius of a circle).

3. Proof of Theorem 1.1

Now, let us look around more general cases.

Proof of Theorem 1.1

Let $x = \sum_{i=0}^{n} a_i b^i$ be an abundant number. It is known that $n \leq e$ by [7, Theorem 3.8]. The cardinality of abundant number N(e, b) is the number of ordered pairs $(a_e, a_{e-1}, \dots, a_1, a_0)$ that satisfy

$$S_{e,b}(x) - x = \sum_{i=0}^{e} a_i^e - \sum_{i=0}^{e} a_i b^i$$
$$= \sum_{i=1}^{e} (a_i^e - a_i b^i) + (a_0^e - a_0) > 0.$$

In other words, N(e, b) is the number of ordered pairs $(a_e, a_{e-1}, \dots, a_1, a_0)$ that satisfy

$$a_0^e - a_0 > \sum_{i=1}^e \left(a_i b^i - a_i^e \right).$$

Let $f(x) = x^e - x$ with $e \ge 2$. We derive that f(0) = f(1) and f(x) increases at $x \ge 1$ (see Figure 3).

Consider $f_1(x) := f(x) - \sum_{i=1}^{e} (a_i b^i - a_i^e)$. If $f_1(x)$ have real roots then we call α is the largest real root of $f_1(x)$. It is easy checked $\alpha > 0$ (see Figure 3).

Otherwise, $f_1(x)$ have no real roots, we put $\alpha = 0$. Denote $c = \#\{a_0|a_0^e - a_0 > \sum_{i=1}^e (a_i b^i - a_i^e) \text{ with } a_0 \in \{0, 1, \dots, b-1\}\}$. Then we find that

$$c = \begin{cases} b, & \text{if } \alpha < 1, \\ b - [\alpha] - 1, & \text{if } 1 \le \alpha < b - 1 \\ 0, & \text{otherwise.} \end{cases}$$

Equivalently, we deduce that

FIGURE 3. The cardinality of a_0 , which satisfies $a_0^e - a_0 > \sum_{i=1}^e (a_i b^i - a_i^e)$ Now, we put

$$\beta = \begin{cases} \left(\sum_{i=1}^{e} \left(a_i b^i - a_i^e\right)\right)^{\frac{1}{e}}, & \text{if } \sum_{i=1}^{e} \left(a_i b^i - a_i^e\right) \ge 0, \\ 0, & \text{otherwise} \end{cases}$$

i.e.,

$$\beta = \left(\frac{|\sum_{i=1}^{e} (a_i b^i - a_i^e)| + \sum_{i=1}^{e} (a_i b^i - a_i^e)}{2}\right)^{\frac{1}{e}}.$$
(3)

Therefore, we have $\alpha^e - \alpha = \beta^e$. Since $\beta \ge 0$, we put $\alpha = \beta + h$ with h > 0. Then we have

$$\left(\beta+h\right)^{e}-\left(\beta+h\right)=\beta^{e} \tag{4}$$

and h < 1. If $h \ge 1$, the equation (4) does not make sense. On the other hand, if $\beta = 0$, that is, $\sum_{i=1}^{e} (a_i b^i - a_i^e) \le 0$, then $\alpha < 1$. Thus, we have $\alpha - 1 < \beta \le \alpha$ and

$$\lim_{b \to \infty} \frac{\beta}{b} = \lim_{b \to \infty} \frac{\alpha}{b}.$$
 (5)

By Lemma 2.1, we get $x < (e-1) b^e$.

If b > e-1 then we obtain $0 \le a_e \le e-2$ and $0 \le a_i \le b-1$ $(1 \le i \le e-1)$. (6)

Hence, for sufficiently large b (that is, b > e - 1), we have

$$N(e,b) = \sum_{a_e=0}^{e-2} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} c \right)$$

Thus,

$$F(b) := \lim_{b \to \infty} \frac{N(e, b)}{b^{e}}$$

$$= \lim_{b \to \infty} \frac{\sum_{a_{e}=0}^{e-2} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} c \right)}{b^{e}}$$

$$= \lim_{b \to \infty} \sum_{a_{e}=0}^{e-2} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{c}{b} \right)$$

$$= \sum_{a_{e}=0}^{e-2} \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{-|\alpha| + |\alpha - b| + b}{2b} \right)$$
(7)

by (2).

By (5) and (7), we obtain

Upper bound of the cardinality of e-powered numbers of digits

$$F(b) = \sum_{a_e=0}^{e-2} \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \frac{-|\beta| + |\beta - b| + b}{2b} \right).$$

Since $\beta \geq 0$, we deduce that

$$F(b) = \sum_{a_e=0}^{e-2} \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \frac{|\beta - b| - \beta + b}{2b} \right).$$

On the other hand,

$$G(b) := \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \frac{\left(\sum_{i=1}^{e} (a_i b^i - a_i^e)\right)^{\frac{1}{e}}}{b} \right)$$
$$= \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \frac{\left((a_e b^e - a_e^e) + \sum_{i=1}^{e-1} (a_i b^i - a_i^e)\right)^{\frac{1}{e}}}{b} \right)$$
$$= \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \left((a_e - \frac{a_e^e}{b^e}) + \sum_{i=1}^{e-1} (a_i b^{i-e} - \frac{a_i^e}{b^e})\right)^{\frac{1}{e}} \right).$$
(8)

From (6), we easily check that

$$\lim_{b \to \infty} \frac{a_e^e}{b^e} = 0 \text{ and } \lim_{b \to \infty} \frac{a_t}{b^{e-t}} = 0 \ (1 \le t \le e-2).$$
(9)

By (8) and (9), we get

$$\begin{aligned} G(b) &= \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \left((a_e + \sum_{i=1}^{e-1} (a_i b^{i-e} - \frac{a_i^e}{b^e}))^{\frac{1}{e}} \right) \\ &= \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \left((a_e + \frac{a_{e-1}}{b} - \sum_{i=1}^{e-1} (\frac{a_i}{b})^e)^{\frac{1}{e}} \right) \\ &= \lim_{b \to \infty} \left(\frac{1}{b} \sum_{a_{e-1}=1}^{b} \frac{1}{b} \sum_{a_{e-2}=1}^{b} \cdots \frac{1}{b} \sum_{a_1=1}^{b} \left((a_e + \frac{a_{e-1}}{b} - \sum_{i=1}^{e-1} (\frac{a_i}{b})^e)^{\frac{1}{e}} \right) \right). \end{aligned}$$

Accordingly, if

$$y = \left(\frac{|a_e + x_{e-1} - \sum_{i=1}^{e-1} x_i^e| + a_e + x_{e-1} - \sum_{i=1}^{e-1} x_i^e}{2}\right)^{\frac{1}{e}}$$

then

$$\lim_{b \to \infty} \frac{N(e,b)}{b^e} = \sum_{a_e=0}^{e-2} \lim_{b \to \infty} \frac{1}{b^{e-1}} \left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_1=0}^{b-1} \frac{|\beta - b| - \beta + b}{2b} \right)$$
$$= \frac{1}{2} \sum_{a_e=0}^{e-2} \int_0^1 \int_0^1 \cdots \int_0^1 (|y - 1| - y + 1) dx_1 dx_2 \cdots dx_{e-1}.$$

This is completed the proof of Theorem 1.1.

Remark 3.1. According to Theorem 1.1, if $z = a_e + x_{e-1} - \sum_{i=1}^{e-1} x_i^e$, then

$$y = \begin{cases} z^{\frac{1}{e}}, & \text{ if } z \ge 0, \\ 0, & \text{ otherwise.} \end{cases}$$

And, if $f(y) = \frac{|y-1|-y+1}{2}$, then

$$f(y) = \begin{cases} 0, & \text{if } y \ge 1, \\ -y+1, & \text{if } 0 \le y < 1. \end{cases}$$

Therefore, we have

$$f(y) = \begin{cases} 1, & \text{if } z < 0, \\ 1 - z^{\frac{1}{e}}, & \text{if } 0 \le z \le 1, \\ 0, & \text{if } z > 1. \end{cases}$$

Although the case of when e = 2 in Theorem 1.1 is already explained in Theorem 2.2, let us solve it again using the Theorem 1.1. Putting $y = \left(\frac{|x_1 - x_1^2| + x_1 - x_1^2}{2}\right)^{\frac{1}{2}}$, we have an example as follow.

Example 3.1. Let e = 2 in Theorem 1.1. We only consider $0 \le x_1 \le 1$, $x_1 - x_1^2 \ge 0$. Then $y = (x_1 - x_1^2)^{\frac{1}{2}}$. Now, we obtain $0 \le y \le 1$, |y - 1| - y + 1 = 1 - y - y + 1 = 2 - 2y.

426

Thus,

$$\lim_{b \to \infty} \frac{N(2,b)}{b^2} = \frac{1}{2} \int_0^1 (2-2y) \, dx_1$$
$$= \int_0^1 \left(1 - \sqrt{x_1 - x_1^2}\right) \, dx_1$$
$$= 1 - \int_0^1 \sqrt{\frac{1}{4} - \left(x_1 - \frac{1}{2}\right)^2} \, dx_1$$
$$= 1 - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \cdot \frac{1}{2} \cos \theta d\theta$$
$$= 1 - \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta$$
$$= 1 - \frac{\pi}{8}.$$

References

- 1. E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
- H.G. Grundman and E.A. Teeple, *Generalized happy numbers*, Fibonacci Quart. 39 (2001), 462-466.
- H.G. Grundman and E.A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain J. Math. 37 (2007), 1905-1916.
- 4. H. Pan, On consecutive happy numbers, J. Number Theory 128 (2008), 1646-1654.
- X. Zhou and T. Cai, On e-power b-happy numbers, Rocky Mountain J. Math. 39 (2009), 2073-2081.
- 6. H.G. Grundman, Semihappy numbers, J. Integer Seq. 13 (2010), no.4, Article 10.4.8, 5 pp.
- K.H. Jeong and I.S. Kim, The greatest expanded number expanded by summing of powers of its digits, Honam Math J. 37 (2015), no.4, 529-547

Kyung Ho Jeong

Unnam high school, 17, Imbangul-daero, 165beon-gil, Gwangsan-gu, Gwangju, 62325, Republic of Korea.

e-mail: jkh0702@empas.com

Jisuk So

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.

e-mail: goleta961@jbnu.ac.kr

Soeun Kim

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.

e-mail: cybersoeun@jbnu.ac.kr

Daeyeoul Kim

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.

e-mail: kdaeyeoul@jbnu.ac.kr

428