UPPER BOUND OF THE CARDINALITY OF E-POWERED NUMBERS OF DIGITS

KYUNG HO JEONG, JISUK SO, SOEUN KIM* AND DAEYEOUL KIM

Abstract

Let us think of adding each digit of a natural number, in bases b, that are e-powered. By studying for a number becoming greater than or equal to oneself, we will consider values of $\lim _{b \rightarrow \infty} \frac{N(e, b)}{b^{e}}$.

AMS Mathematics Subject Classification : 11A63, 11A25.
Key words and phrases : Squares of digits, sums.

1. Introduction

Let $\mathbb{N}:=\{1,2,3, \cdots\}$ be the set of natural numbers, $\mathbb{N}_{0}:=\mathbb{N} \bigcup\{0\}$.
If b is a natural number that is greater than or equal to 2 and e is also a natural number. Let $S_{e, b}: \mathbb{N} \rightarrow \mathbb{N}$ map each positive integer to the sum of the e-th powers of its base b digits. Then the natural number $x=\sum_{i=0}^{n} a_{i} b^{i}$, where a_{i} are integers $0 \leq a_{i} \leq b-1, a_{n} \neq 0$ with $n \in \mathbb{N}_{0}$. For $x=a_{n} a_{n-1} \ldots a_{1} a_{0(b)}$, we define $S_{e, b}(x)=\sum_{i=0}^{n} a_{i}^{e}$. See [2]. We will give examples as follows Table 1.

A positive integer x is called the abundant (resp. stable) number according as $S_{e, b}(x)>x,($ resp. $=x)$. Among the abundant number, the largest value of x is called the greatest abundant number. Moreover, among the abundant and stable number, the largest value of x is called the greatest number.

If e is given and b increases infinitely, then we consider the cardinality of abundant number and the ratio of b^{e}. In other words, when $N(e, b)$ is defined as the cardinality of abundant number in the operation for the addition of e powered in base b, does the value of

$$
\lim _{b \rightarrow \infty} \frac{(\text { Cardinality of abundant number })}{b^{e}}=\lim _{b \rightarrow \infty} \frac{N(e, b)}{b^{e}}
$$

exist?

[^0]© 2018 Korean SIGCAM and KSCAM.

b, e	$x=6$	$S_{e, b}(x)$
$b=2,1 \leq e \leq 6$	$x=110_{(2)}$	$S_{e, 2}(x)=2$
$b=3,1 \leq e \leq 6$	$x=20_{(3)}$	$S_{1,3}(x)=2, S_{2,3}(x)=4, S_{3,3}(x)=8$ $S_{4,3}(x)=16, S_{5,3}(x)=32, S_{6,3}(x)=64$
$b=4,1 \leq e \leq 6$	$x=12_{(4)}$	$S_{1,4}(x)=3, S_{2,4}(x)=5, S_{3,4}(x)=9$ $S_{4,4}(x)=17, S_{5,4}(x)=33, S_{6,4}(x)=65$
$b=5,1 \leq e \leq 6$	$x=11_{(5)}$	$S_{e, 5}(x)=2$
$b=6,1 \leq e \leq 6$	$x=10_{(6)}$	$S_{e, 6}(x)=1$
$b=7,1 \leq e \leq 6$	$x=6{ }_{(7)}$	$S_{1,7}(x)=6, S_{2,7}(x)=36, S_{3,7}(x)=216$ $S_{4,7}(x)=1296, \quad S_{5,7}(x)=7776, S_{6,7}(x)=46656$

TABLE 1. Examples of $S_{e, b}(x), 2 \leq b \leq 7,1 \leq e \leq 6$

Our main goal of this article is to prove a upper bound of abundant number as $b \rightarrow \infty$. More precisely, we prove the following theorem.

Theorem 1.1. Let $N(e, b)$ be the cardinality of x satisfying $x<S_{e, b}(x)$.
Then,

$$
\lim _{b \rightarrow \infty} \frac{N(e, b)}{b^{e}}=\frac{1}{2} \sum_{a_{e}=0}^{e-2} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}(|y-1|-y+1) d x_{1} d x_{2} \cdots d x_{e-1}
$$

Here,

$$
y=\left(\frac{\left|a_{e}+x_{e-1}-\sum_{i=1}^{e-1} x_{i}^{e}\right|+a_{e}+x_{e-1}-\sum_{i=1}^{e-1} x_{i}^{e}}{2}\right)^{\frac{1}{e}}
$$

This paper is organized as follows. In section 2, we give lemma for proving Theorem 1.1 and Theorem 2.2. In section 3, we give the proof of Theorem 1.1. A few note related references are [1], [3], [4], [5] and [6].

2. Case of the square

To prove our Theorem 1.1 and Theorem 2.2, we need the following lemma.
Lemma 2.1 ([7, Lemma 3.1]). Let $b>2, e \in \mathbb{N}-\{1\}$ and $x=\sum_{i=0}^{n} a_{i} b^{i}$ with $0 \leq a_{i} \leq b-1, a_{n} \neq 0$. If $x \leq S_{e, b}(x)$ then $x<(e-1) b^{e}$.

Now, we consider the cardinality of abundant numbers when b tends to infinity with $e=2$.

Theorem 2.2. Let $N(2, b)$ be the cardinality of x satisfying $x<S_{2, b}(x)$.
Then,

$$
\lim _{b \rightarrow \infty} \frac{N(2, b)}{b^{2}}=1-\frac{\pi}{8}
$$

Proof. By Lemma 2.1, if $x \leq S_{2, b}(x)$ then $x<b^{2}$. Take $x=k b+c$, for k and c are nonnegative integers that less than or equal to $b-1$. We note that $x \leq S_{2, b}(x)$ if and only if $k b+c \leq k^{2}+c^{2}$. Thus, we obtain

$$
\begin{equation*}
\left(k-\frac{b}{2}\right)^{2}+\left(c-\frac{1}{2}\right)^{2} \geq\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \tag{1}
\end{equation*}
$$

Naturally, we can picture of a square containing a diagonal line, which connects the origin and a point $(b-1, b-1)$ by assuming that k is the x-coordinate and c is the y-coordinate by (1) (see Figure 1). Then, the integer ordered pairs within the boundary or on the boundary of a square are overlapped with a circle, $\left(x-\frac{b}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$. Among the ordered pairs, pairs that are out of the circle indicate the abundant number, $x<S_{2, b}(x)$ and the pairs is the stable number on the boundary of a circle except the origin indicate $x=S_{2, b}(x)$. Thus, the cardinality of abundant number is the amount of integer ordered pairs on the within the square and out of the circle excluding the boundary.

Figure 1. The area of $x \leq S_{2, b}(x)$
The area of $x<S_{2, b}(x)$ is
(Area of a square) - (Area of half circle) $<$ (Area of $\left.x<S_{2, b}(x)\right)<$ (Area of a square) - (Area of half circle) $+(b-1)$.

Since
(Area of a square) $-($ Area of half circle $)=b(b-1)-\frac{1}{2} \cdot \pi \cdot\left(\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)$, we obtain
$b(b-1)-\frac{1}{2} \cdot \pi \cdot\left(\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)<N(2, b)<b(b-1)-\frac{1}{2} \cdot \pi \cdot\left(\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)+$ $(b-1)$.

Thus, if b is large enough, then

$$
\lim _{b \rightarrow \infty} \frac{N(2, b)}{b^{2}}=1-\frac{\pi}{8}
$$

This is completed the proof of Theorem 2.2.

Example 2.3. In base 10 , if $x=10 k+c$, then

$$
\begin{aligned}
& x<S_{2,10}(x) \Leftrightarrow 10 k+c<k^{2}+c^{2} \\
\Leftrightarrow & (k-5)^{2}+\left(c-\frac{1}{2}\right)^{2}>25+\left(\frac{1}{4}\right) .
\end{aligned}
$$

Figure 2. Sum of squares in base 10 , when $x \leq S_{2,10}(x)$
With base $10,(0,9)$ is the farthest point from the origin of the circle and the amount of abundant number is 50 (see Figure 2).
Remark 2.1. By Theorem 1.1, in base b, if $x=k b+c$ then the inequality satisfied with $x<S_{2, b}(x)$ is $\left(k-\frac{b}{2}\right)^{2}+\left(c-\frac{1}{2}\right)^{2}>\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$.

At this time the farthest point from the origin of the circle is $(0, b-1)$ and we obtain that

$$
\begin{aligned}
S_{2, b}(x)-x= & \left(k-\frac{b}{2}\right)^{2}+\left(c-\frac{1}{2}\right)^{2}-\left(\left(\frac{b}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right) \\
= & \text { Square of (distance between a point indicating oneself and the } \\
& \text { center of a circle) }- \text { Square of (length of radius of a circle). }
\end{aligned}
$$

3. Proof of Theorem 1.1

Now, let us look around more general cases.

Proof of Theorem 1.1

Let $x=\sum_{i=0}^{n} a_{i} b^{i}$ be an abundant number. It is known that $n \leq e$ by [7, Theorem 3.8]. The cardinality of abundant number $N(e, b)$ is the number of ordered pairs ($a_{e}, a_{e-1}, \cdots, a_{1}, a_{0}$) that satisfy

$$
\begin{aligned}
S_{e, b}(x)-x & =\sum_{i=0}^{e} a_{i}^{e}-\sum_{i=0}^{e} a_{i} b^{i} \\
& =\sum_{i=1}^{e}\left(a_{i}^{e}-a_{i} b^{i}\right)+\left(a_{0}^{e}-a_{0}\right)>0 .
\end{aligned}
$$

In other words, $N(e, b)$ is the number of ordered pairs $\left(a_{e}, a_{e-1}, \cdots, a_{1}, a_{0}\right)$ that satisfy

$$
a_{0}^{e}-a_{0}>\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)
$$

Let $f(x)=x^{e}-x$ with $e \geq 2$. We derive that $f(0)=f(1)$ and $f(x)$ increases at $x \geq 1$ (see Figure 3).

Consider $f_{1}(x):=f(x)-\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)$. If $f_{1}(x)$ have real roots then we call α is the largest real root of $f_{1}(x)$. It is easy checked $\alpha>0$ (see Figure 3).

Otherwise, $f_{1}(x)$ have no real roots, we put $\alpha=0$.
Denote $c=\#\left\{a_{0} \mid a_{0}^{e}-a_{0}>\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)\right.$ with $\left.a_{0} \in\{0,1, \cdots, b-1\}\right\}$.
Then we find that

$$
c= \begin{cases}b, & \text { if } \alpha<1 \\ b-[\alpha]-1, & \text { if } 1 \leq \alpha<b-1 \\ 0, & \text { otherwise }\end{cases}
$$

Equivalently, we deduce that

$$
\begin{equation*}
\frac{-|\alpha|+|\alpha-b|+b}{2}-1 \leq c \leq \frac{-|\alpha|+|\alpha-b|+b}{2}+1 \tag{2}
\end{equation*}
$$

Figure 3. The cardinality of a_{0}, which satisfies $a_{0}^{e}-a_{0}>\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)$
Now, we put

$$
\beta= \begin{cases}\left(\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)\right)^{\frac{1}{e}}, & \text { if } \sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right) \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

i.e.,

$$
\begin{equation*}
\beta=\left(\frac{\left|\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)\right|+\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)}{2}\right)^{\frac{1}{e}} \tag{3}
\end{equation*}
$$

Therefore, we have $\alpha^{e}-\alpha=\beta^{e}$.
Since $\beta \geq 0$, we put $\alpha=\beta+h$ with $h>0$. Then we have

$$
\begin{equation*}
(\beta+h)^{e}-(\beta+h)=\beta^{e} \tag{4}
\end{equation*}
$$

and $h<1$. If $h \geq 1$, the equation (4) does not make sense.
On the other hand, if $\beta=0$, that is, $\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right) \leq 0$, then $\alpha<1$.
Thus, we have $\alpha-1<\beta \leq \alpha$ and

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \frac{\beta}{b}=\lim _{b \rightarrow \infty} \frac{\alpha}{b} . \tag{5}
\end{equation*}
$$

By Lemma 2.1, we get $x<(e-1) b^{e}$.

If $b>e-1$ then we obtain $0 \leq a_{e} \leq e-2$ and $0 \leq a_{i} \leq b-1(1 \leq i \leq e-1)$. (6)
Hence, for sufficiently large b (that is, $b>e-1$), we have

$$
N(e, b)=\sum_{a_{e}=0}^{e-2}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} c\right) .
$$

Thus,

$$
\begin{align*}
F(b) & :=\lim _{b \rightarrow \infty} \frac{N(e, b)}{b^{e}} \\
& =\lim _{b \rightarrow \infty} \frac{\sum_{a_{e}=0}^{e-2}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} c\right)}{b^{e}} \\
& =\lim _{b \rightarrow \infty} \sum_{a_{e}=0}^{e-2} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{c}{b}\right) \tag{7}\\
& =\sum_{a_{e}=0}^{e-2} \lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{-|\alpha|+|\alpha-b|+b}{2 b}\right)
\end{align*}
$$

by (2).
By (5) and (7), we obtain

$$
F(b)=\sum_{a_{e}=0}^{e-2} \lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{-|\beta|+|\beta-b|+b}{2 b}\right)
$$

Since $\beta \geq 0$, we deduce that

$$
F(b)=\sum_{a_{e}=0}^{e-2} \lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{|\beta-b|-\beta+b}{2 b}\right)
$$

On the other hand,

$$
\begin{align*}
G(b) & :=\lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{\left(\sum_{i=1}^{e}\left(a_{i} b^{i}-a_{i}^{e}\right)\right)^{\frac{1}{e}}}{b}\right) \\
& =\lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{\left(\left(a_{e} b^{e}-a_{e}^{e}\right)+\sum_{i=1}^{e-1}\left(a_{i} b^{i}-a_{i}^{e}\right)\right)^{\frac{1}{e}}}{b}\right) \\
& =\lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1}\left(\left(a_{e}-\frac{a_{e}^{e}}{b^{e}}\right)+\sum_{i=1}^{e-1}\left(a_{i} b^{i-e}-\frac{a_{i}^{e}}{b^{e}}\right)\right)^{\frac{1}{e}}\right) \tag{8}
\end{align*}
$$

From (6), we easily check that

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \frac{a_{e}^{e}}{b^{e}}=0 \text { and } \lim _{b \rightarrow \infty} \frac{a_{t}}{b^{e-t}}=0(1 \leq t \leq e-2) \tag{9}
\end{equation*}
$$

By (8) and (9), we get

$$
\begin{aligned}
G(b) & =\lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1}\left(\left(a_{e}+\sum_{i=1}^{e-1}\left(a_{i} b^{i-e}-\frac{a_{i}^{e}}{b^{e}}\right)\right)^{\frac{1}{e}}\right)\right. \\
& =\lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1}\left(\left(a_{e}+\frac{a_{e-1}}{b}-\sum_{i=1}^{e-1}\left(\frac{a_{i}}{b}\right)^{e}\right)^{\frac{1}{e}}\right)\right. \\
& =\lim _{b \rightarrow \infty}\left(\frac{1}{b} \sum_{a_{e-1}=1}^{b} \frac{1}{b} \sum_{a_{e-2}=1}^{b} \cdots \frac{1}{b} \sum_{a_{1}=1}^{b}\left(\left(a_{e}+\frac{a_{e-1}}{b}-\sum_{i=1}^{e-1}\left(\frac{a_{i}}{b}\right)^{e}\right)^{\frac{1}{e}}\right) .\right.
\end{aligned}
$$

Accordingly, if

$$
y=\left(\frac{\left|a_{e}+x_{e-1}-\sum_{i=1}^{e-1} x_{i}^{e}\right|+a_{e}+x_{e-1}-\sum_{i=1}^{e-1} x_{i}^{e}}{2}\right)^{\frac{1}{e}}
$$

then

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \frac{N(e, b)}{b^{e}} & =\sum_{a_{e}=0}^{e-2} \lim _{b \rightarrow \infty} \frac{1}{b^{e-1}}\left(\sum_{a_{e-1}=0}^{b-1} \sum_{a_{e-2}=0}^{b-1} \cdots \sum_{a_{1}=0}^{b-1} \frac{|\beta-b|-\beta+b}{2 b}\right) \\
& =\frac{1}{2} \sum_{a_{e}=0}^{e-2} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}(|y-1|-y+1) d x_{1} d x_{2} \cdots d x_{e-1}
\end{aligned}
$$

This is completed the proof of Theorem 1.1.

Remark 3.1. According to Theorem 1.1, if $z=a_{e}+x_{e-1}-\sum_{i=1}^{e-1} x_{i}^{e}$, then

$$
y= \begin{cases}z^{\frac{1}{e}}, & \text { if } z \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

And, if $f(y)=\frac{|y-1|-y+1}{2}$, then

$$
f(y)= \begin{cases}0, & \text { if } y \geq 1 \\ -y+1, & \text { if } 0 \leq y<1\end{cases}
$$

Therefore, we have

$$
f(y)= \begin{cases}1, & \text { if } z<0 \\ 1-z^{\frac{1}{e}}, & \text { if } 0 \leq z \leq 1 \\ 0, & \text { if } z>1\end{cases}
$$

Although the case of when $e=2$ in Theorem 1.1 is already explained in Theorem 2.2, let us solve it again using the Theorem 1.1. Putting $y=\left(\frac{\left|x_{1}-x_{1}^{2}\right|+x_{1}-x_{1}^{2}}{2}\right)^{\frac{1}{2}}$, we have an example as follow.

Example 3.1. Let $e=2$ in Theorem 1.1. We only consider $0 \leq x_{1} \leq 1$, $x_{1}-x_{1}^{2} \geq 0$. Then $y=\left(x_{1}-x_{1}^{2}\right)^{\frac{1}{2}}$.

Now, we obtain $0 \leq y \leq 1,|y-1|-y+1=1-y-y+1=2-2 y$.

Thus,

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \frac{N(2, b)}{b^{2}} & =\frac{1}{2} \int_{0}^{1}(2-2 y) d x_{1} \\
& =\int_{0}^{1}\left(1-\sqrt{x_{1}-x_{1}^{2}}\right) d x_{1} \\
& =1-\int_{0}^{1} \sqrt{\frac{1}{4}-\left(x_{1}-\frac{1}{2}\right)^{2}} d x_{1} \\
& =1-\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \cdot \frac{1}{2} \cos \theta d \theta \\
& =1-\frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta \\
& =1-\frac{\pi}{8}
\end{aligned}
$$

References

1. E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
2. H.G. Grundman and E.A. Teeple, Generalized happy numbers, Fibonacci Quart. 39 (2001), 462-466.
3. H.G. Grundman and E.A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain J. Math. 37 (2007), 1905-1916.
4. H. Pan, On consecutive happy numbers, J. Number Theory 128 (2008), 1646-1654.
5. X. Zhou and T. Cai, On e-power b-happy numbers, Rocky Mountain J. Math. 39 (2009), 2073-2081.
6. H.G. Grundman, Semihappy numbers, J. Integer Seq. 13 (2010), no.4, Article 10.4.8, 5 pp.
7. K.H. Jeong and I.S. Kim, The greatest expanded number expanded by summing of powers of its digits, Honam Math J. 37 (2015), no.4, 529-547

Kyung Ho Jeong

Unnam high school, 17, Imbangul-daero, 165beon-gil, Gwangsan-gu, Gwangju, 62325, Republic of Korea.
e-mail: jkh0702@empas.com

Jisuk So

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
e-mail: goleta961@jbnu.ac.kr

Soeun Kim

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
e-mail: cybersoeun@jbnu.ac.kr

Daeyeoul Kim

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
e-mail: kdaeyeoul@jbnu.ac.kr

[^0]: Received March 7, 2018. Revised July 20, 2018. Accepted August 3, 2018. * Corresponding author.

