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Abstract. In this paper, we prove the discrete compactness property for

Kim-Kwak finite element spaces of any order under a weak quasi-uniformity
assumption.
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1. Introduction

The edge finite elements are widely used in the appoximation of the eigen-
value problem which arise from electromagnetics. In the theoretical analysis, the
important question is to determine the convergence rate of the resulting approx-
imation. For the lowest order edge element space of Nedelec[9] on a tetrahedral
mesh, convergence was proved by Kikuchi[2], [3] and [4] using the discrete com-
pactness property. Under the quasi-uniformity assumption, P. Monk and L.
Demkowicz[8] observed the convergence for the Nedelec edge elements of all or-
der based on a tetrahedral or hexahedral mesh using the theory of collectively
compact operators. The key property in establishing the applicability of this
theory is the discrete compactness property of Kikuchi. In a recent article [5]
, Kim and Kwak introduced a new family of edge elements on hexahedral grid
which, contrary to the classical edge elements, has fewer degrees of freedom and
still provides an optimal order approximation. The aim of this paper is to prove
the discrete compactness property for Kim-Kwak spaces of any order.

An outline of the article is as follows. In section 2, we present the model
problem and the discretization of the problem. Section 3 contains Kim-Kwak
edge finite element spaces and the associated scalar spaces. In section 4, we
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prove the main result of this article concerning the discrete compactness property
under some assumption.

2. Setting of the model problem

Let Ω ∈ R3 be a bounded, Lipschitz, polyhedral domain with simply con-
nected boundary ∂Ω. The eigenvalue problem is to find an electric field E ̸= 0
and an electric eigenvalue λ such that

∇×∇×E = λE, in Ω, (1)

∇ ·E = 0, in Ω, (2)

n×E = 0, on ∂Ω, (3)

where n is an unit outward normal. Since boundary ∂Ω is simply connected,
λ = 0 is not an eigenvalue for this problem. Also, there is a discrete set of real
eigenvalues {λn}∞n=1 with 0 < λ1 ≤ λ2 ≤ λ3 · · · such that λn → ∞ as n → ∞.
The eigenspaces W (λn) associated with λn, n = 1, · · · , is finite dimensional.

For the finite element approximation of this problem, we let

Hcurl
0 (Ω) = {u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3, n× u = 0}.

We denote by ∥ · ∥ the L2(Ω) or (L2(Ω))3 norm, and for other Hilbert space Hk

we denote by ∥ · ∥k the norm on that space. Also we denote

(u,v) =

∫
Ω

u · vdV.

Since the solution E of Maxwell’s equations satisfies ∇ ·E = 0 in Ω, we need to
define

X = {u ∈ Hcurl
0 (Ω) | ∇ · u = 0 in Ω}.

Then the weak form of the eigenvalue problem (1)− (3) is to find E ∈ X, E ̸= 0
and λ ∈ R such that

(∇×E, ∇× ϕ) = λ(E, ϕ), ∀ϕ ∈ X. (4)

Now suppose that we discretizeHcurl
0 (Ω) using edge finite elementsVh parametrized

by the mesh size h > 0. Then for the edge spaces, we can define a scalar space
Sh ⊂ H1

0 (Ω) such that ∇Sh ⊂ Vh. Since the divergence constraint, we cannot
easily approximate X by an interior approximation. Let

Xh = {uh ∈ Vh | (uh, ∇ph) = 0, ∀ph ∈ Sh}.
Then Xh * X and we can write the following orthogonal decomposition:

Vh = Xh ⊕ Sh. (5)

Using Xh, the discrete eigenvalue problem corresponding to (4) is to find Eh ∈
Xh, Eh ≠ 0 and λh ∈ R such that

(∇×Eh, ∇× ϕh) = λh(Eh, ϕh), ∀ϕh ∈ Xh. (6)
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In practical calculation, we usually use Vh in place of Xh. Thus we would
compute Eh ∈ Vh, Eh ̸= 0 and λh ∈ R such that

(∇×Eh, ∇× ϕh) = λh(Eh, ϕh), ∀ϕh ∈ Vh.

Using the decomposition (5), we choose ϕh = ∇ph for ph ∈ Sh. Then

λh(Eh, ∇ph) = 0, ∀ph ∈ Sh.

Since physical eigenvalues are nonzero, it suffices to analyze (6).

3. Kim-Kwak edge finite element spaces

In this section, we shall consider the edge finite element spaces due to Kim-
Kwak[5] and the scalar spaces due to Kim[6] . We start by covering Ω by a
regular mesh using hexahedra with each edge parallel to one of the coordinate
axes. Let us denote the mesh by τh where h is the maximum diameter of the
elements in τh. For the proof of the discrete compactness property, we need a
weak quasi-uniformity restriction. Let hK denote the diameter of the smallest
sphere containing the element K ∈ τh and let hmin = minK∈τhhK . If there is

a constant C with 0 < C < 1 such that hh−Cmin → 0 as h → 0, then the mesh
is weakly quasi-uniform. Let Qℓ,m,n be the space of polynomials of maximum
degree ℓ in x, m in y and n in z.

For given k ≥ 1, we define the edge finite element space U(K) is the subspace
of Qk,k+1,k+1(K) ×Qk+1,k,k+1(K) ×Qk+1,k+1,k(K), where the elements in the
set {αi,j}j=1,2 are replaced by the elements βi, and the three elements γi are
replaced by the single element δ for i = 1, 2, 3 as follows:

α11 = {(0, xk+1ykzℓ, 0)}kℓ=0

α12 = {(xkyk+1zℓ, 0, 0)}kℓ=0

⇒ β1 = {(xkyk+1zℓ, xk+1ykzℓ, 0)}kℓ=0,

α21 = {(0, 0, xℓyk+1zk)}kℓ=0

α22 = {(0, xℓykzk+1, 0)}kℓ=0

⇒ β2 = {(0, xℓykzk+1, xℓyk+1zk)}kℓ=0,

α31 = {(0, 0, xk+1yℓzk)}kℓ=0

α32 = {(xkyℓzk+1, 0, 0)}kℓ=0

⇒ β3 = {(xkyℓzk+1, 0, xk+1yℓzk)}kℓ=0,

γ1 = {(xkyk+1zk+1, 0, 0)}
γ2 = {(0, xk+1ykzk+1, 0)}
γ3 = {(0, 0, xk+1yk+1zk)}

⇒ δ = {(xkyk+1zk+1, xk+1ykzk+1, xk+1yk+1zk)}.

For the degrees of freedom, we need to define two auxiliary spaces. First, we
define Φcurl

k (x, y) to be the subspace of Qk−1, k(x, y) × Qk, k−1(x, y) where
the two elements (xk−1yk, 0) and (0, xkyk−1) are replaced by the single ele-
ment (xk−1yk, xkyk−1). To define the second space, we use a replacement rule
similar to the definition of U(K). We define Ψcurl

k (K) to be the subspace
of Qk, k−1, k−1(K) × Qk−1, k, k−1(K) × Qk−1, k−1, k(K), where the elements
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Figure 1. For simplicity, we only show the degrees of freedom
for k = 1. Left one is Nedelec element: there are two tangential
component degrees of freedom per edge, four per face and six
interior degrees of freedom. Right one is new element: there are
two tangential component degrees of freedom per edge, three per
face and four interior degrees of freedom

{ϕij}j=1,2 are replaced by the elements ψi and the three elements ξi are re-
placed by the single element ζ for i = 1, 2, 3 as follows:

ϕ11 = {(0, xk−1ykzℓ, 0)}k−2
ℓ=0

ϕ12 = {(xkyk−1zℓ, 0, 0)}k−2
ℓ=0

⇒ ψ1 = {(xkyk−1zℓ, xk−1ykzℓ, 0)}k−2
ℓ=0 ,

ϕ21 = {(0, 0, xℓyk−1zk)}k−2
ℓ=0

ϕ22 = {(0, xℓykzk−1, 0)}k−2
ℓ=0

⇒ ψ2 = {(0, xℓykzk−1, xℓyk−1zk)}k−2
ℓ=0 ,

ϕ31 = {(0, 0, xk−1yℓzk)}k−2
ℓ=0

ϕ32 = {(xkyℓzk−1, 0, 0)}k−2
ℓ=0

⇒ ψ3 = {(xkyℓzk−1, 0, xk−1yℓzk)}k−2
ℓ=0 ,

ξ1 = {(xkyk−1zk−1, 0, 0)}
ξ2 = {(0, xk−1ykzk−1, 0)}
ξ3 = {(0, 0, xk−1yk−1zk)}

⇒ ζ = {(xkyk−1zk−1, xk−1ykzk−1, xk−1yk−1zk)}.

If K is a cube with general edge e and face f , and if t is a unit tangent vector
along e, we define the degrees of freedom as follows:∫

e

u · t q ds, for each edges e of K, ∀q ∈ Pk(e), (7)∫
f

(u× n) · q dA, for each faces f of K, ∀q ∈ Φcurl
k (f), (8)∫

K

u · q dx, ∀q ∈ Ψcurl
k (K). (9)

Then a vector function inU(K) is uniquely determined by the degrees of freedom
(7) − (9). And the finite element space U(K) is curl conforming. Our new
element has smaller number of degrees of freedom than the well known Nedelec
finite elements on parallelepiped(see Figure 1). Hence it is more efficient.
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Then we have the following space:

Uh = {uh ∈ Hcurl
0 (Ω)| uh|K ∈ U(K), ∀K ∈ τh}.

Now we discretize Hcurl
0 (Ω) using edge finite elements. We take subspace Vh ⊂

Hcurl
0 (Ω) to be

Vh = {uh ∈ Uh| n× uh = 0, on ∂Ω}. (10)

Using the degrees of freedom (7)− (9), we can define an interpolation operator

rK : Hk+1(K) → U(K)

for an arbitrary element K. Then the global interpolation operator rh is defined
piecewise by

(rhu)|K = rK(u|K)

for all K ∈ τh.
To define the associated scalar space Sh, we first let S(K) is the subspace of

Qk+1, k+1, k+1(K) except constant multiple of the term xk+1yk+1zℓ, xk+1yℓzk+1,
xℓyk+1zk+1 and xk+1yk+1zk+1 for ℓ = 0 . . . k. For any scalar function p ∈ S(K),
we define the following degrees of freedom:

p(a), for the eight vertices a of K, (11)∫
e

pq ds, for each edges e of K, ∀q ∈ Pk−1(e), (12)∫
f

pq dA, for each faces f of K, ∀q ∈ Q∗
k−1, k−1(f), (13)∫

K

pq dA, ∀q ∈ Q∗
k−1, k−1, k−1(K), (14)

where Q∗
k−1, k−1(f) is the subspace of Qk−1, k−1(f) except constant multiple

of the term xk−1yk−1, yk−1zk−1, zk−1xk−1 and Q∗
k−1, k−1, k−1(K) is the sub-

space of Qk−1, k−1, k−1(K) except constant multiple of the term xk−1yk−1zℓ,
xk−1yℓzk−1, xℓyk−1zk−1 and xk−1yk−1zk−1 for ℓ = 0 . . . k − 2. Then a scalar
function in S(K) is uniquely determined by the degrees of freedom (11)− (14).
And S(K) is the gradient conforming element space. Now we define the scalar
space Sh as follows:

Sh = {ph ∈ H1
0 (Ω)| ph|K ∈ S(K), ∀K ∈ τh}. (15)

Then ∇Sh ⊂ Vh. Using the degrees of freedom (11) − (14), we can defined an
interpolation operator

πK : H
3
2+δ(K) → S(K)

by requiring the degrees of freedom of πKp− p vanish. Then the global interpo-
lation operator πh is defined element-wise by

(πhp)|K = πK(p|K)

for all K ∈ τh.
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Using the finite element spaces and the interpolation operators presented
above, we have the following result.

Theorem 3.1 (Kim [6]). If p is sufficiently smooth such that rh∇p and πhp are
defined, then we have

∇πhp = rh∇p.
And there is a constant C independent of h such that

∥ p− πhp ∥1 ≤ Chk ∥ p ∥k+1,

∥ u− rhu ∥ + ∥ ∇ × (u− rhu) ∥ ≤ Chk+1(∥ u ∥k+1 + ∥ ∇ × u ∥k+1).

4. Discrete compactness property for the Kim-Kwak elements

In this section, we will show that Kim-Kwak edge element spaces satisfy the
discrete compactness property under the weak quasi-uniformity assumption on
the mesh τh. Let {hn}∞n=0 denote a refinement path so that h0 > h1 > h2 >
· · · > 0 and hn → 0 as n→ ∞. The numbers hn index a sequence of progressively
finer meshes used to approximate the problem.

First, we consider a regularity result due to Costabel and Dauge [1]. For given
f ∈ X ′(X ′ is the (L2(Ω))3 dual space of X) with ∇· f = 0 in Ω, let u ∈ X satisfy

∇×∇× u = f

in Ω. For a given domain Ω, there is a constant ε0 > 0 such that for all ε with
0 ≤ ε < ε0 and f ∈ (Hε−1(Ω))3 we can write

u = w +∇χ,

where w ∈ (Hε+1(Ω))3 and χ ∈ H1
0 (Ω) with ∆χ ∈ Hε(Ω). In addition, we have

∥ w ∥ε+1 + ∥ χ ∥1 ≤ C ∥ f ∥ε−1, (16)

∥ ∆χ ∥ ≤ C ∥ f ∥−1 . (17)

We also assume that there is an δ > 0 such that χ ∈ H
3
2+δ(Ω) and

∥ χ ∥ 3
2+δ

≤ C ∥ ∆χ ∥ . (18)

Theorem 4.1. Let the mesh τh is regular and weakly quasi-uniform. Assume
that the regularity results (16) − (18) hold. Suppose that the sequence {un}∞n=1

has the following properties:
(i) {un}∞n=1 is a bounded sequence in Hcurl

0 (Ω).
(ii) un ∈ Xhn for each n and hn → 0 as n→ ∞.
Then we can always choose a subsequence, still denoted by {un}∞n=1 for simplicity
such that

un → u

strongly in (L2(Ω))3 and weakly in X, where u is a certain element of X.
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Proof. Using the Helmholtz decomposition, we can write

un = un +∇pn, (19)

where pn ∈ H1
0 (Ω) satisfies (un,∇q) = (∇pn,∇q) for all q ∈ H1

0 (Ω), and un ∈ X
satisfies ∇×∇×un = ∇×∇×un in Ω. Since ∇×un is a piecewise polynomial
vector, ∇ × ∇ × un ∈ (Hε−1(Ω))3 for any ε. By the regularity assumption,
un = wn +∇χn for wn ∈ (Hε+1(Ω))3 for all ε with 0 ≤ ε < ε0. Hence rhnw

n

is well-defined. Since χ ∈ H
3
2+δ(Ω) for some δ > 0, rhn∇χn is well-defined. By

Theorem 1, ∇πhnχ
n = rhn∇χn. Since rhnu

n = un, we have

un = rhnu
n +∇πhnp

n (20)

= (rhnu
n − un) + un +∇πhnp

n (21)

Using the continuous Friedrichs inequality and Weber’s compactness property[7],
the sequence {un}∞n=1 ⊂ X, there is a subsequence, again denote by {un}∞n=1,
such that

un → u (22)

strongly in (L2(Ω))3 and weakly in X, for some function u ∈ X. Since un ∈ Xhn

and un ∈ X,

(∇πhnp
n,∇πhnp

n) = (un − rhnu
n,∇πhnp

n)

= (un − rhnu
n,∇πhnp

n).

Therefore, we have

∥ ∇πhnp
n ∥ ≤ ∥ un − rhnu

n ∥ . (23)

Now, we will prove that ∥ rhnu
n −un ∥→ 0 as n→ ∞. By the definition of un,

rhnu
n − un = (rhnw

n −wn) +∇(πhnχ
n − χn). (24)

Using the regularity of wn and the error estimate of Theorem 1, we have

∥ rhnw
n −wn ∥ ≤ Chε+1

n ∥ wn ∥ε+1 .

From (16) and the weak quasi-uniformity assumption,

∥ rhnw
n −wn ∥ ≤ Chε+1

n ∥ ∇ × un ∥ε ≤ Chε+1
n h−εmin,n ∥ ∇ × un ∥→ 0 (25)

as h→ 0 and n→ ∞. By the assumed regularity of χn,

∥ ∇(πhnχ
n − χn) ∥ ≤ Ch

1
2+δ
n ∥ ∇χn ∥ 1

2+δ
≤ Ch

1
2+δ
n ∥ ∆χn ∥ .

However, ∥ ∆χn ∥ ≤ C for each n. So we have

∥ πhnχ
n − χn ∥1→ 0 (26)

as n→ ∞. From (25)− (26), we show that

∥ rhnu
n − un ∥→ 0 (27)

as n→ ∞. Using (22), (23) and (27) in (21) completes the proof.
�
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5. Conculusions

Discretization of Maxwell eigenvalue problems with Kim-Kwak edge finite
elements involves a simultaneous use of two discrete subspaces (10) and (15)
of H1

0 (Ω) and Hcurl
0 (Ω), reproducing the exact sequence condition. Kim-Kwak

edge finite element spaces and the scalar spaces of Kim have fewer degrees of
freedom than well-known Nedelec finite element spaces. Especially, stiffness
matrix resulting from Kim-Kwak element has a similar data structure as those
of standard Nedelec space. However, the resulting stiffness matrix is smaller than
the original system and the elementary operation involved does not increase the
condition numbers. Hence, the system can be solved by more efficiently than
original one.

Kikuchi’s discrete compactness property, along with appropriate approxima-
bility conditions, guarantees the convergence of discrete Maxwell eigenvalues to
the exact ones. Relying on our main result Theorem 4.1, we can prove the
convergence of eigenvalue approximation.
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