DOI QR코드

DOI QR Code

ONE GENERATOR QUASI-CYCLIC CODES OVER 𝔽2 + v𝔽2

  • OZEN, MEHMET (Department of Mathematics, Faculty of Science and Arts, Sakarya University) ;
  • OZZAIM, N. TUGBA (Department of Mathematics, Faculty of Science and Arts, Sakarya University) ;
  • AYDIN, NUH (Department of Mathematics and Statistics, Kenyon College)
  • Received : 2017.06.20
  • Accepted : 2018.04.27
  • Published : 2018.09.30

Abstract

In this paper, we investigate quasi-cyclic codes over the ring $R={\mathbb{F}}_2+v{\mathbb{F}}_2$, where $v^2=v$. We investigate the structure of generators for one-generator quasi-cyclic codes over R and their minimal spanning sets. Moreover, we find the rank and a lower bound on minimum distances of free quasi-cyclic codes over R. Further, we find a relationship between cyclic codes over a different ring and quasi-cyclic codes of index 2 over R.

Keywords

References

  1. T. Abualrub, N. Aydin, and P. Seneviratne, Theta-Cyclic Codes Over ${\mathbb{F}}_2$+$v{\mathbb{F}}_2$, Australasian J. Combinatorics 54 (2012), 115-126.
  2. N. Aydin and D. K. Ray-Chaudhuri, Quasi cyclic codes over ${\mathbb{Z}}_4$ and some new binary codes, IEEE Trans. Inf. Theory 48 (2002), 2065-2069. https://doi.org/10.1109/TIT.2002.1013145
  3. N. Aydin, S. Karadeniz, and B. Yildiz, Some new binary quasi-cyclic codes from codes over the ring $\mathbb{F}_2$ + $u{\mathbb{F}}_2$ + $v{\mathbb{F}}_2$ + $uv{\mathbb{F}}_2$, AAECC 24 (2013), 355-367. https://doi.org/10.1007/s00200-013-0207-y
  4. M. Bhaintwal and S. Wasan, On quasi cyclic codes over ${\mathbb{Z}}_q$, Appl. Algebra Eng. Commun. Comput 20 (2009), 459-480. https://doi.org/10.1007/s00200-009-0110-8
  5. Y. Cao, 1-generator quasi-cyclic codes over finite chain rings, AAECC 24 (2013), 53-72. https://doi.org/10.1007/s00200-012-0182-8
  6. J. Cui and J. Pei, Quaternary 1-generator quasi cyclic codes, Des. Codes.and Cryptogr. 58 (2011), 23-33. https://doi.org/10.1007/s10623-010-9381-0
  7. R. Daskalov and P. Hristov, New binary one-generator quasi-cyclic codes, IEEE Trans. Inf. Theory 49 (2003), 3001-3005. https://doi.org/10.1109/TIT.2003.819337
  8. A. Dertli, Y. Cengellenmis, S. Eren, On Quantum Codes Obtained From Cyclic Codes Over A2, International Journal of Quantum Information 13 (2015).
  9. J. Gao, L. Shen and F. Wei. Fu, Generalized quasi cyclic codes over ${\mathbb{F}}_q$ + $u{\mathbb{F}}_q$, arXiv: 1307.1746v1 [cs.IT], 2013.
  10. K. Lally and P. Fitzpatrick, Algebraic structure of quasi-cyclic codes, Discr. Appl. Math. 111 (2001), 157-175. https://doi.org/10.1016/S0166-218X(00)00350-4
  11. S. Ling and P. Sole, On the algebraic structure of quasi-cyclic codes I: Finite Fields, IEEE Trans. Inf. Theory 47 (2001), 2751-2760. https://doi.org/10.1109/18.959257
  12. I. Siap, T. Abualrub and B. Yildiz, One generator quasi-cyclic codes over ${\mathbb{F}}_2$+$u{\mathbb{F}}_2$, J. Frank. Inst. 349 (2012), 284-291. https://doi.org/10.1016/j.jfranklin.2011.10.020
  13. I. Siap and N. Kulhan, The structure of generalized quasi-cyclic codes, Appl. Math. ENotes 5 (2005), 24-30.
  14. I. Siap, N. Aydin and D. K. Ray-Chaudhuri, New ternary quasi-cyclic codes with better minimum distances, IEEE Trans. Inf. Theory 46 (2000), 1554-1558. https://doi.org/10.1109/18.850694
  15. S. Zhu, Y. Wang, and M. Shi, Some results on cyclic codes over ${\mathbb{F}}_2$+$v{\mathbb{F}}_2$, IEEE Trans. Inf. Theory 56 (2010), 1680-1684. https://doi.org/10.1109/TIT.2010.2040896