DOI QR코드

DOI QR Code

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Kim, Kiyoung (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Lim, Sung Nam (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Han, Jonghee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Sung Pil (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kang, Min-Goo (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Jang, Seong-Cheol (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • Received : 2018.03.30
  • Accepted : 2018.05.14
  • Published : 2018.09.30

Abstract

To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

Keywords

References

  1. M. Farooque, H.C. Maru, J. Power Sources, 2006, 160(2), 827-34. https://doi.org/10.1016/j.jpowsour.2006.04.127
  2. K. Tanimoto, M. Yanagida, T. Kojima, Y. Tamiya, H. Matsumoto, Y. Miyazaki, J. Power Sources, 1998, 72(1), 77-82. https://doi.org/10.1016/S0378-7753(97)02673-6
  3. J.Y. Youn, S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, S.A. Hong, K.Y. Lee, J. Power Sources, 2006, 157(1), 121-127. https://doi.org/10.1016/j.jpowsour.2005.07.068
  4. J.H. Wee, Mater Chem Phys, 2007, 101(2-3), 322-328. https://doi.org/10.1016/j.matchemphys.2006.06.006
  5. E. Park, M. Hong, H. Lee, M. Kim, K. Kim, J. Power Sources, 2006, 143, 84-92.
  6. J.J. Lee, H.J. Choi, S.H. Hyun, H.C. Im, J. Power Sources, 2008, 179(2), 504-510. https://doi.org/10.1016/j.jpowsour.2007.12.110
  7. H. Morita, M. Kawase, Y. Mugikura, K. Asano, J. power sources, 2010, 195, 6988-6996. https://doi.org/10.1016/j.jpowsour.2010.04.084
  8. S. Freni, E. Passalacqua, F. Barone, Int. J. Energy Res., 1997, 21(12), 1061-1070. https://doi.org/10.1002/(SICI)1099-114X(19971010)21:12<1061::AID-ER294>3.0.CO;2-V
  9. C. Lee, J. Hwang, M. Oh, D. Kim, H. Lim, J. Power Sources, 2008, 179(2), 467-473. https://doi.org/10.1016/j.jpowsour.2007.12.125
  10. C.Y. Yuh, J.R. Selman, J. Electrochem. Soc., 1991, 138(12), 3642-3648. https://doi.org/10.1149/1.2085473
  11. S.H. Lu, J.R. Selman, J. Electroanalytical Chem., 1992, 333(1-2), 257-271. https://doi.org/10.1016/0022-0728(92)80395-K
  12. L. Giorgi, M. Carewska, S. Scaccia, E. Simonetti, E. Giacometti, R. Tulli, Inter. J. Hydrogen Energy, 1996, 21(6), 491-496. https://doi.org/10.1016/0360-3199(95)00097-6
  13. S.A. Song, S.C. Jang, J. Han, S.P. Yoon, S.W. Nam, I.H. Oh, S.G. Oh, Inter. J. Hydrogen Energy, 2012, 37, 19304-19311. https://doi.org/10.1016/j.ijhydene.2012.04.081
  14. S.A. Song, S.C. Jang, J. Han, S.P. Yoon, S.W. Nam, I.H. Oh, T.H. Lim, J. Power Sources, 2011, 196(23), 9900-9905. https://doi.org/10.1016/j.jpowsour.2011.08.032
  15. S.A. Song, M.G. Kang, J. Han, S.P. Yoon, S.W. Nam, I.H. Oh, D.K. Choi, J. Electrochem. Soc., 2011, 158(6), B660- B666. https://doi.org/10.1149/1.3571532
  16. H. Devianto, Z. Li, S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, H. Lee, Catalysis Today, 2009, 146(1-2), 2-8. https://doi.org/10.1016/j.cattod.2008.12.017
  17. S.G. Kim, S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, Electrochimica Acta, 2004, 49(19), 3081-3089. https://doi.org/10.1016/j.electacta.2004.01.027
  18. A. Durairajan, H. Colon-Mercado, B. Haran, R. White, B. Popov, J. Power Sources, 2002, 104(2), 157-168. https://doi.org/10.1016/S0378-7753(01)00972-7
  19. Y. Gu, X. Su, Y. Du, C. Wang, Appl. Surf. Sci., 2010, 256(20), 5862-5866. https://doi.org/10.1016/j.apsusc.2010.03.065
  20. S.C. Kim, W.G. Shim, Applied Catalysis B: Environmental, 2008, 79(2), 149-156. https://doi.org/10.1016/j.apcatb.2007.10.016
  21. H.L. Castricum, H. Bakker, E.K. Poels, Mater Sci. Eng. A, 2001, 304, 418-423.
  22. Y. Matsumura, T. Nakamori, Appl. Catalysis. A, 2004, 258(1), 107-114. https://doi.org/10.1016/j.apcata.2003.08.009
  23. X. Zheng, A.T. Bell, J. Phys. Chem. C, 2008, 112(13), 5043-5047. https://doi.org/10.1021/jp711415g
  24. S.T. King, Catalysis Today, 1997, 33(1-3), 173-182. https://doi.org/10.1016/S0920-5861(96)00118-6
  25. B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O'Brien, Nano Letter, 2006, 6(9), 2095-2098. https://doi.org/10.1021/nl061457v
  26. S.P. Wang, X.C. Zheng, X.Y. Wang, S.R. Wang, S.M. Zhang, L.H. Yu, W.P. Huang, S.H. Wu, Catalysis Letter, 2005, 105(3), 163-168. https://doi.org/10.1007/s10562-005-8686-5
  27. T.J. Hung, D.H. Tsai, Catalysis Letters, 2003, 87(3-4), 173-178. https://doi.org/10.1023/A:1023495223738
  28. R. Zhang, H. Liu, H. Zheng, L. Ling, Z. Li, B. Wang, Appl Surf Sci, 2011, 257(11), 4787-4794. https://doi.org/10.1016/j.apsusc.2010.12.040
  29. D. Le, S. Stolbov, T.S. Raman, Surf Sci., 2009, 603(10- 12), 1637-1645. https://doi.org/10.1016/j.susc.2008.12.039
  30. E.L. Uzunova, J. Phys. Chem. A, 2011, 115(8), 1320-1330. https://doi.org/10.1021/jp1097266
  31. J.H. Park, K. Natesan, Oxidation of Metals, 1993, 39(5-6), 411-435. https://doi.org/10.1007/BF00664664