DOI QR코드

DOI QR Code

지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구

A Case Study of Elementary Students' Developmental Pathway of Spatial Reasoning on Earth Revolution and Apparent Motion of Constellations

  • 투고 : 2018.05.31
  • 심사 : 2018.08.08
  • 발행 : 2018.08.31

초록

이 연구는 3개월 동안 별자리의 움직임을 관찰하여 그것을 묘사하고 그와 같은 별자리의 겉보기 운동이 발생하게 된 원인을 별자리와 태양, 지구의 위치 관계를 그림으로 표현하는 다층 서답형 문항(multi-tiered constructed response items)을 초등학생들에게 시행하고, 그 결과를 바탕으로 지구의 공전과 별자리의 겉보기 운동을 이해할 때 나타나는 초등학생들의 공간적 추론의 유형을 구분하여 학습발달과정의 관점에서 분석하였다. 초등학교 네 곳의 6학년 학생들 65명이 연구에 참여하였으며, 지구와 달의 운동 단원을 학습하기 전과 단원 학습한 후에 각각 동일한 검사지로 검사를 행하여 응답하였다. 사전/사후 검사 응답 결과를 귀납적으로 범주화하여 지구의 공전 운동을 이해하는데 적용된 공간적 추론의 유형을 수준별로 구분하였다. 그리고 사전 검사와 사후 검사에서 각 수준별 학생들의 분포를 비교하여 교사의 교수활동을 통해 개별 학생들의 공간적 추론 수준이 어떻게 변화하였는지 파악하여 학습발달과정의 관점에서 서술하였다. 학생들의 응답 결과 하위 정착점은 별자리가 지구 주위를 돌고 있다고 해석하는 지구 중심 우주관에 근거한 서술이 있었다. 중간 단계 수준의 응답으로 지구의 운동을 평면적으로 이해하거나 지구가 태양 주위를 공전함에 따라 별자리도 지구를 따라서 움직인다는 직관적인 태양 중심 우주관에 해당하는 서술이 있었다. 학생들의 응답 수준이 높아짐에 따라 별자리의 운동을 지구의 공전에 따른 겉보기 운동으로 이해하고, 점차 지구에서 보는 관점의 관측 사실을 우주에서 내려다보는 관점의 설명 모델로 전환하여 이해하는 서술이 있었다. 상위 정착점 수준의 학생들은 태양 중심 우주관에 근거하여 별자리의 겉보기 운동과 지구의 공전을 과학적으로 서술하였다. 학습발달과정의 선행연구와 비교할 때 학생들의 실제 응답 결과에 근거한 발달의 경로를 조사한 Evolutionary LPs 에 해당하며, 직관적 사고의 극복 여부, 지구에서 보는 관점과 지구 밖 우주에서 내려다보는 관점 간의 전환 능력 등이 초등학생들의 학습발달의 경로를 결정하는 중요한 임계 포인트가 됨을 논의하였다.

This study investigated elementary students' understanding of Earth revolution and its accompanied apparent motion of constellation in terms of spatial reasoning. We designed a set of multi-tiered constructed response items in which students described their own idea about the reason of consecutive movement of constellations for three months and drew a diagram about relative locations of the Sun, the Earth, and the constellations. Sixty-five sixth grade students from four elementary schools participated in the tests both before and after science classes on the relative movement of Earth and Moon. Their answers to the items were categorized inductively in terms of transforming frames of reference which are observed on the Earth and designed from the Space-based perspective. We analyzed those categories by the levels of spatial reasoning and depicted the change of students' levels between pre/post-tests so that we could get an idea on the preliminary developmental pathway of students' understanding of this topic. The lower anchor description was that constellations move around the Earth with geocentric perspective. Intermediate level descriptions were planar understanding of Earth movement, intuitive idea on constellation movement along with the Earth. Students with intermediate levels did not reach understanding of the apparent motion of constellations. As the upper anchor description students understood the apparent motion of constellations according to the Earth revolution and could transform their frames of reference between Earth-based view and Space-based view. The features as the case of evolutionary learning progressions and critical points of students' development for this topic were discussed.

키워드

참고문헌

  1. Alonzo, A. C., Neidorf, T., & Anderson, C. W. (2012). Using learning progression to inform large-scale assessment. In Alonzo, A. C., & Gotwals, A. W. (Eds.). Learning science in science: Current challenges and future directions (pp. 211-240). Rotterdam, The Netherlands: Sense Purblishers.
  2. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. https://doi.org/10.1207/s15326977ea1101_2
  3. Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32, 9-13. https://doi.org/10.3102/0013189X032001009
  4. Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence based approach to reform. Consortium for Policy Research in Education Report #RR-63. Philadelphia, PA: Consortium for Policy Research in Education.
  5. Duncan, R. G., & Hmelo-Silver, C. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609. https://doi.org/10.1002/tea.20316
  6. Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123-182. https://doi.org/10.1080/03057267.2011.604476
  7. Lee, K., Dong, H., Choi, W., Kwon, G., Lee, I., & Kim, Y-J. (2017). Exploring a learning progression for eight core concepts of middle school science using consrtucted response items in the National Assessment of Educational Achievement (NAEA). Journal of Science Education, 41(3), 382-404. https://doi.org/10.21796/jse.2017.41.3.382
  8. Lee, K., Maeng, S., Partk, Y., Lee, J. & Oh, H. (2016). Validation of learning progressions for earth’s motion and Solar System in elementary grades: Focusing on construct validity and consequential validity. Journal of the Korean Association for Science Education, 36(1), 177-190. https://doi.org/10.14697/jkase.2016.36.1.0177
  9. Lelliott, A., & Rollnick, M. (2010). Big Ideas: A review of astronomy education research 1974-2008. International Journal of Science Education, 32(13), 1771-1799. https://doi.org/10.1080/09500690903214546
  10. Liben, L. S., & Downs, R. M. (1993). Understanding person-space-map relations: Cartographic and developmental perspectives. Developmental Psychology, 29(4), 739-752. https://doi.org/10.1037/0012-1649.29.4.739
  11. Maeng, S., & Lee, K. (2015). Cross-sectional item response analysis of geocognition assessment for the development of plate tectonics learning progressions: Rasch model. Journal of Korean Association for Science Education, 35(1), 37-52. https://doi.org/10.14697/jkase.2015.35.1.0037
  12. Maeng, S., Lee, K., Park, Y., Lee, J. & Oh, H. (2014). Development and validation of a learning progression for astronomical system using ordered multiple-choice assessment. Journal of the Korean Association for Science Education, 34(8), 703-718. https://doi.org/10.14697/jkase.2014.34.8.0703
  13. Maeng, S., Seong, Y., & Jang, S. (2013). Present states, methodological features, and an exemplar study of the research on learning progressions. Journal of the Korean Association for Science Education, 33, 161-180. https://doi.org/10.14697/jkase.2013.33.1.161
  14. Ministry of Education & Human Resource Development. (2007). National science curriculum. Seoul, Korea: MEHRD.
  15. Ministry of Education, Science, and Technology. (2009). National science curriculum. Seoul, Korea: MEST.
  16. Ministry of Education. (2015). National science curriculum. Seoul, Korea: MOE.
  17. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. (R.A. Duschl, H.A. Schweingruber, & A.W. Shouse, Eds.). Washington, DC: The National Academies Press.
  18. Neumann, K., Viering, T., Boone, W., & Fischer, H. E. (2013). Towards a learning progresson of energy. Journal of Research in Science Teaching, 50(2), 162-188. https://doi.org/10.1002/tea.21061
  19. NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
  20. Noh, T., Lee, J., Yang, C., Kang, S., & Kang, H. (2016). Investigation of learning progressions for dissolution and solution concepts. Journal of Korean Association for Science Education, 36(2), 295-302. https://doi.org/10.14697/jkase.2016.36.2.0295
  21. Oh, H., & Lee, K. (2018). Exploring sixth graders learning progressions for lunar phase change: Focusing on astronomical systems thinking. Journal of Korean Earth Science Society, 39(1), 103-116. https://doi.org/10.5467/JKESS.2018.39.1.103
  22. Plummer, J. D., & Maynard, L. (2014). Building a learning progression for celestial motion: An exploration of students’ reasoning about the seasons. Journal of Research in Science Teaching, 51(7), 902-929. https://doi.org/10.1002/tea.21151
  23. Plummer, J. D., Bower, C. A., & Liben, L. S. (2016). The role of perspective taking in how children connect reference frames when explaining astronomical phenomena. International Journal of Science Education, 38(3), 345-365. https://doi.org/10.1080/09500693.2016.1140921
  24. Plummer, J. D., Kocareli, A., & Slagle, C. (2014). Learning to explain astronomy across moving frames of reference: Exploring the role of classroom and planetarium-based instructional contexts. International Journal of Science Education, 36(7), 1083-1106. https://doi.org/10.1080/09500693.2013.843211
  25. Plummer, J. D., Wasko, K., & Slagle, C. (2011). Children learning to explain daily celestial motion: Understanding astronomy across moving frames of reference. International Journal of Science Education, 33(14), 1963-1992. https://doi.org/10.1080/09500693.2010.537707
  26. Seong, Y., Maeng, S., & Jang, S. (2013). A learning progression for water cycle from fourth to sixth graders with ordered multiple-choice items. Elementary Science Education, 32(2), 139-158.
  27. Waugh, C. K., & Gronlund, N. E. (2013). Assessment of student achievement (10th edition). Pearson.

피인용 문헌

  1. 학교 급별에 적합한 지구의 공전 실험에 대한 예비교사의 인식 연구 vol.13, pp.3, 2018, https://doi.org/10.15523/jksese.2020.13.3.297
  2. 행성의 공전 운동에 대한 초등 예비교사의 이해와 설명 모델 vol.40, pp.1, 2018, https://doi.org/10.15267/keses.2021.40.1.1