DOI QR코드

DOI QR Code

아까시 나무 고온추출물의 항염증 효과

Anti-inflammatory Effect of the Robinia pseudoacacia L. High Temperature Extract

  • 투고 : 2018.04.05
  • 심사 : 2018.07.14
  • 발행 : 2018.08.31

초록

본 연구는 아까시나무의 물 추출물, 에탄올 추출물 및 고온 추출물을 이용하여 마우스 대식세포주인 Raw 264.7 세포에 대해 염증억제 효과가 있는지 알아보고자 수행하였다. RP1(아까시 나무 물 추출물), RP2(아까시 나무 에탄올 추출물) 및 RP3(아까시 나무 고온 추출물)은 세포생존율 분석에서 $200{\mu}g/m{\ell}$의 농도까지 Raw 264.7 세포에 세포독성을 나타나지 않았다. NO 생성 억제효과를 분석하였을 때 LPS 처리군과 비교하여 RP3는 약 87% 정도의 억제효과를 나타내 RP1과 RP2에 비해 NO 억제활성이 가장 높았다. 뿐만 아니라 RP3는 RP1과 RP2와 비교하여 염증매개인자의 억제율이 각각 $PGE_2$ (86.3%), $TNF-{\alpha}$ (64.1%), IL-6 (65.1%) 및 $IL-1{\beta}$ (63.3%)로 가장 높았다. 이는 RP3의 처리가 LPS에 의해 증가된 염증매개인자의 분비를 억제함을 통해 항염증 효과가 있을 것으로 생각되며, 염증관련 신호전달경로에 직접적으로 작용할 가능성이 있는 것으로 판단된다. 하지만 Raw 264.7 세포주는 염증조절복합체를 구성하는 ASC 단백질이 발현되지 않아 다른 신호전달 경로를 통해 염증매개인자를 분비하기 때문에, 설치류의 대식세포를 직접 일차배양(primary culture)하여 이에 관련된 신호전달경로를 확인하는 추가 실험이 필요하다고 사료된다.

This study was conducted to compare anti-inflammatory effect of Robinia pseudoacacia L. using different extraction methods (water extraction, ethanol extraction and high temperature extraction). We investigated anti-inflammatory effect of Robinia pseudoacacia L. extract (RP1, water extract; RP2, ethanol extract; RP3, high temperature extract) on lipopolysaccharide (LPS)-stimulated inflammation using Raw 264.7 cell. Cells were treated with various concentrations (12.5, 25, 50, 100 or $200{\mu}g/m{\ell}$) of water extract, ethanol extract and high temperature extract. Cytotoxicity was not observed on Raw 264.7 cells, LPS-stimulated production of NO (nitric oxide), $PGE_2$ (prostaglandin $E_2$) and cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$) was reduced by RP3 treatment more than RP1 and RP2. In conclusion, these results indicated that inflammation on Raw 264.7 cells was improved by RP3. Treatment of RP3 could be used to natural medicine for improving inflammatory response. However, further experiment is required to observe how the high temperature extraction at $500^{\circ}C$ for 48 h influences on alteration of active ingredient in Robinia pseudoacacia L., and conducts the inflammation signal pathway on Raw 264.7 cells.

키워드

참고문헌

  1. Ahn, S.H., D.G. Jeong, S.J. Oh, S.H. Lee and D.H. Chung. 2017. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-$1{\beta}$ production by macrophages. Immunol Lett. 82:50-56.
  2. Blaise, G.A., D. Gauvin, M. Gangal and S. Authier. 2005. Nitric oxide, cell signaling and cell death. Toxicology 15:177-192.
  3. Bradley, J.R. 2008. TNF-mediated inflammatory disease. J Pathol. 214:149-160.
  4. Borthwick, L.A. 2016. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin Immunopathol. 38:517-534.
  5. Chung, H.Y., M. Cesari, S. Anton, E. Marzetti, S. Giovannini, A.Y. Seo, C. Carter, B.P. Yu and C. Leeuwenburgh. 2009. Molecular inflammation: underpinnings of aging and agerelated disease. Ageing Res Rev. 8:18-30.
  6. Choi, Y.J., W.S. Jo, H.J. Kim, B.H. Nam, E.Y. Kang, S.J. Oh, G.A. Lee and M.H. Jeong. 2010. Anti-inflammatory effect of Chlorella ellipsoidea extracted from seawater by organic solvents. Korean J Fish Aquat Sci. 43:39-45.
  7. Emanuela, R. and A.F. Garret. 2011. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 31:986-1000.
  8. Guo, H.F. and M.H. Wang. 2018. Anti-inflammatory and anticancer effect of Stachys affinis Tubers. Korean J Plant Res. 30:679-685.
  9. Higuchi, M., N. Higashi, H. Taki and T. Osawa. 1990. Cytolytic mechanism of activated macrophages. tumor necrosis factor and L-arginine-dependent mechanism act as synergistically as the major cytolytic mechanism of activated macrophage. J Immunol. 144:1425-1431.
  10. Jaffrey, S.R. and S.H. Snyder. 1995. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol. 11:417-440.
  11. Ji, J.D., Y.H. Lee and G.G. Song. 2004. Prostaglandin E2 (PGE2): roles in immun responses and inflammation. J Korean Rheum Assoc. 11:307-315.
  12. Kwon, J.H., M.W. Byun and Y.H. Kim. 1995. Chemical composition of acacia flower (Robinia pseudo-acacia). Korean J Food Sic Technol. 27:789-793.
  13. Kim, Y.K. and S.K. Kim. 2002. Nitric oxide and dental pulp. J Korean Acad Oper Dent. 27:543-551.
  14. Kwon, Y.J., K.H. Kim and H.K. Kim. 2002. Changes of total polyphenol content and antioxidant activity of Ligularia fischeri extracts with different microwave-assisted extraction condritions. Kor J Food Preserv. 9:332-337.
  15. Kim, H.N., S.B. Park, G.H. Park, H.J. Eo, J.H. Song, H.Y. Kwon and J.B. Jeong. 2018. Anti-inflammatory effect of the root extracts from Hibiscus syriacus in LPS-stimulated RAW 264.7 cells. Korean J Plant Res. 31:211-217.
  16. Lowenstein, C.J., E.W. Alley, P. Raval, A.M. Snowman, S.H. Synder, S.W. Russcll and W.J. Murphy. 1993. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. PNASU. 90:9730-9734.
  17. Lee, S.H., S.J. Suh, K.H. Lee, J.B. Yang, S.U. Choi and S.S. Park. 2013. Anti-inflammatory effect of Peel extracts from Citrus fruits. J Fd Hyg Safety 28:342-348.
  18. Lee, J.W. and Y.J. Kang. 2018. Anti-inflammatory effect of Abeliophyllum distichum Flower extract and associated MAPKs and NF-${\kappa}B$ pathway in Raw264.7 cells. Korean J Plant Res. 31:202-210.
  19. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454:428-435.
  20. Park, J.H., H.S. Lee, H.C. Mun, D.H. Kim, N.S. Seong, H.G. Jung, J.K. Bang and H.Y. Lee. 2004. Improvement of anticancer activation of ultrasonificated extracts from Acanthopanax senticosus Harms, Ephedra sinica Stapf, Rubus coreanus Miq. and Artemisia capillaris Thunb. Kor J Med Crop Sci. 12: 273-278.
  21. Popa, C., M.G. van, Netea, P.L. Riel, J.W. van, der Meer and A.F. Stalenhoef. 2007. The role of TNF-alpha in chronic inflammatory condritions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 48:751-762.
  22. Pelegrin, P., C. Gutierrez and A. Surprenant. 2008. P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol. 180:7147-7157.
  23. Park, H.M. and J.H. Hong. 2014. Effect of extraction methods on antioxidant activities of Mori ramulus. J Korean Soc Food Sci Nutr. 43:1709-1715.
  24. Park, S.B., H.M. Song, H.N. Kim, G.H. Park, H.J. Son, Y. Um, J.A. Park and J.B. Jeong. 2018. Anti-inflammatory effect of Biji (Soybean curd residue) on LPS-stimulated RAW264.7 cells. Korean J Plant Res. 31:117-123.
  25. Patra, J.K., E.S. Kim, K. Oh, H.J. Kim, R. Dgakal, Y Kim, and K.H. Baek, 2015. Bactericidal effect of extracts and metabolites of Robinia pseudoacacia L. on streptococcus mutans and porphyromonas gingivalis causing dental plaque and periodontal inflammatory diseases. Molecules 8:6128-6139.
  26. Ren, K. and R. Torres. 2009. Role of inerleukin-1beta during pain and inflammation. Brain Res Rev. 60:57-64.
  27. Shin, Y.H., H.J. Kim, J.Y. Lee, Y.J. Cho and B.J. An. 2012. Major compound analysis and assessment of natural essential oil on anti-oxidative and anti-microbial effects. J Life Sci. 22(10):1344-1351. https://doi.org/10.5352/JLS.2012.22.10.1344
  28. Woo, J.H., S.L. Shin, Y.D. Chang and C.H. Lee. 2010. Antioxidant effect according to extraction method in extracts of Dendranthema zawadskii var. yezoense and Cosmos bipinnatus. Kor J Hort Sci Technol. 28:462-468.
  29. Youn, S.H., J.S. Han and A.J. Kim. 2017. Anti-oxidant and anti-bacterial aactivities of mouthwash prepared with acacia flower, songin, and topan solar salt. Asian J Beauty Cosmetol. 15:160-168.