Acknowledgement
Supported by : Ministry of Science and Technology
References
- Alhussan, K., Assad, M. and Penazkov, O. (2016), "Analysis of the actual thermodynamic cycle of the detonation engine", Appl. Therm. Eng., 107, 339-344. https://doi.org/10.1016/j.applthermaleng.2016.03.103
- Bauer, P., Presles, H.N., Heuze, O. and Brochet, C. (1986), "Measurement of cell lengths in the detonation front of hydrocarbon oxygen and nitrogen mixtures at elevated initial pressures", Combust. Flame, 64(1), 113-123. https://doi.org/10.1016/0010-2180(86)90102-1
- Ciccarelli, G. and Dorofeev, S. (2008), "Flame acceleration and transition to detonation in ducts", Prog. Energy Combust. Sci., 34(4), 499-550. https://doi.org/10.1016/j.pecs.2007.11.002
- Desbordes, D. and Vachon, M. (1986), "Critical diameter of diffraction for strong plane detonations", Prog. Astro. Aero., 106(1), 131-143.
- Dorofeev, S. (2011), "Flame acceleration and explosion safety applications", Proceedings Combust. Institute, 33(2), 2161-2175. https://doi.org/10.1016/j.proci.2010.09.008
- Edwards, D., Thomas, G.O. and Nettleton, M.A. (1979), "The diffraction of a planar detonation wave at an abrupt area change", J. Fluid Mech., 95(1), 79-96. https://doi.org/10.1017/S002211207900135X
- Fan, Z.C., Fan, W., Tu, H., Li, J. and Yan, C. (2013), "The effect of fuel pretreatment on performance of pulse detonation rocket engines", Exp. Therm. Fluid Sci., 41, 130-142.
- Glassman, I., Yetter, R.A. and Glumac, N.G. (2014), Combustion, Academic press, MA, U.S.A.
- Hsu, Y.C., Chao, Y.C. and Chung, K.M. (2016), "The initial pressure effect on detonation propagation across a mixture", Adv. Mech. Eng., 8(7), 1-9.
- Joshi, D.D. and Lu, F.K. (2016), "Unsteady thrust measurements for pulse detonation engines", J. Propulsion Power, 32(1), 225-236. https://doi.org/10.2514/1.B35520
- Kailasanath, K. (2003), "Recent developments in the research on pulse detonation engines", AIAA J., 41(2), 145-159. https://doi.org/10.2514/2.1933
- Knystautas, R., Lee, J.H. and Guirao, C.M. (1982), "The critical tube diameter for detonation failure in hydrocarbon-air mixtures", Combust. Flame, 48, 63-83. https://doi.org/10.1016/0010-2180(82)90116-X
- Knystautas, R., Guirao, C., Lee, J.H. and Sulmistras, A. (1984), "Measurement of cell size in hydrocarbonair mixtures and predictions of critical tube diameter, critical initiation energy and detonability limits", Prog. Astro. Aero., 94, 23-37.
- Krivosheev, P.N. and Penyaz'kov, O.G. (2011), "Reducing the critical pressure of detonation initiation in transmission to a semiconfined volume", Combust. Explos. Shock Waves, 47(3), 323-329. https://doi.org/10.1134/S0010508211030099
- Kuznetsov, M.S., Dorofeev, S.B., Efimenko, A.A., Alskseev, V.I. and Breitung, W. (1997), "Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture", Shock Waves, 7(5), 297-304. https://doi.org/10.1007/s001930050084
- Kuznetsov, M.S., Alekseev, V.I., Dorofeev, S.B., Matsukov, D. and Boccio, J.L. (1998), "Detonation propagation, decay and reinitiation in nonuniform gaseous mixtures", Symposium on Combust., 27(2), 2241-2247. https://doi.org/10.1016/S0082-0784(98)80073-8
- Lee, J.H. and Matsui, H. (1977), "A comparison of the critical energies for direct initiation of spherical detonations in acetylene oxygen mixtures", Combust. Flame, 28, 61-66. https://doi.org/10.1016/0010-2180(77)90008-6
- Lee, J.H. and Moen, I. (1980), "The mechanisms of transition from deflagration to detonation in vapor cloud explosions", Progress Energy Combust. Sci., 6(4), 359-389. https://doi.org/10.1016/0360-1285(80)90011-8
- Li, J.M., Lai, W.H. and Chung, K.M. (2006), "Tube diameter effect on deflagration-to-detonation transition of propane-oxygen mixtures", Shock Waves, 16(2), 109-117. https://doi.org/10.1007/s00193-006-0056-8
- Li, J.M., Lai, W.H., Chung, K.M. and Lu, F.K. (2008), "Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air", Combust. Flame, 154(3), 331-345. https://doi.org/10.1016/j.combustflame.2008.04.010
- Li, J.M., Chung, K.M. and Hau, Y.C. (2015), "Diaphragm effect on the detonation wave transmission across the interface between two mixtures", Combust. Explos. Shock Waves, 51(6), 717-721. https://doi.org/10.1134/S0010508215060131
- Lu, F.K., Ortiz, A.A., Li, J.M., Kim, C.H. and Chung, K.M. (2009), "Detection of shock and detonation wave propagation by cross correlation", Mech. Syst. Signal Pr., 23(4), 1098-1111. https://doi.org/10.1016/j.ymssp.2008.11.001
- Lu, F.K. and Braun, E.M. (2014), "Rotating detonation wave propulsion: Experimental challenges, modeling and engine concepts", J. Propulsion Power, 30(5), 1125-1142. https://doi.org/10.2514/1.B34802
- Moen, I., Bjerketvedt, D., Jens, A. and Thibault, P.A. (1985), "Transition to detonation in a large fuel-air cloud", Combust. Flame, 61(3), 285-291. https://doi.org/10.1016/0010-2180(85)90109-9
- Moen, I. (1993), "Transition to detonation in fuel-air explosive clouds", J. Hazardous Materials, 33(2), 159-192. https://doi.org/10.1016/0304-3894(93)85052-G
- Ohyagi, S., Obara, T., Hoshi, S., Cai, P. and Yoshihashi, T. (2002), "Diffraction and re-initiation of detonations behind a backward-facing step", Shock Waves, 12(3), 221-226. https://doi.org/10.1007/s00193-002-0156-z
- Oran, E.S. and Gamezo, V.N. (2007), "Origins of the deflagration-to-detonation transition in gas-phase combustion", Combust. Flame, 148(1-2), 4-47. https://doi.org/10.1016/j.combustflame.2006.07.010
- Pandey, K.M. and Debnath, P. (2016), "Review on recent advances in pulse detonation engines", J. Combust., 2016, 1-16.
- Pintgen, F. and Shepherd, J. (2009), "Detonation diffraction in gases", Combust. Flame, 156(3), 665-677. https://doi.org/10.1016/j.combustflame.2008.09.008
- Reynolds, W. (1986), "The element potential method for chemical equilibrium analysis: Implementation in the interactive program STANJAN", ME 270 HO 7; Stanford University, U.S.A.
- Sochet, I., Lamy, T., Brossard, J., Vaglio, C. and Cayzac, R. (1999), "Critical tube diameter for detonation transmission and critical initiation energy of spherical detonation", Shock Waves, 9(2), 113-123. https://doi.org/10.1007/s001930050146
- Sorin, R., Zitoun, R., Khasainov, B. and Desbordes, D. (2009), "Detonation diffraction through different geometries", Shock Waves, 19(1), 11-23. https://doi.org/10.1007/s00193-008-0179-1
- Strehlow. R.A. (1969), "Nature of transverse waves in detonations", Astronautica Acta, 14(5), 539-548.
- Urtiew, P. and Oppenheim, A. (1966), "Experimental observations of the transition to detonation in an explosive gas", Proc. Royal Soc. London. Series A, Math. Phys. Sci., 295, 13-28. https://doi.org/10.1098/rspa.1966.0223
- Vasil'ev, A. (1988), "Diffraction of multifront detonation". Combust. Explos. Shock Waves, 24(1), 92-99. https://doi.org/10.1007/BF00749081
- Vasil'ev, A., Drozdov, M.S. and Khidirov, S.G. (2006), "Nonclassical regimes of wave diffraction in combustible mixtures", Combust., Explos. Shock Waves, 42(6), 746-752. https://doi.org/10.1007/s10573-006-0110-y
- Wang, K., Fan, W., Yan, Y., Zhu, X. and Yan, C. (2011), "Operation of a rotary-valved pulse detonation rocket engine utilizing liquid-kerosene and oxygen", Chinese J. Aeronautics, 24(6), 726-733. https://doi.org/10.1016/S1000-9361(11)60085-X
- Wen, C.S., Chung, K.M. and Hsu, Y.C. (2015), "Smoked foil on deflagration-to-detonation transition", J. Propulsion Power, 31(3), 967-969. https://doi.org/10.2514/1.B35554
- Wu, M.H. and Kuo, W.C. (2012), "Transition to detonation of an expanding flame ring in a sub-millimeter gap", Combust. Flame, 159(3), 1366-1368. https://doi.org/10.1016/j.combustflame.2011.09.008
- Yang, C., Wu, X., Ma, H., Peng, L. and Gao, J. (2016), "Experimental research on initiation characteristics of a rotating detonation engine", Exp. Therm. Fluid Sci., 71, 154-163. https://doi.org/10.1016/j.expthermflusci.2015.10.019
- Yao, S. and Wang, J. (2016), "Multiple ignitions and the stability of rotating detonation waves", Appl. Therm. Eng., 108, 927-936. https://doi.org/10.1016/j.applthermaleng.2016.07.166
Cited by
- Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle vol.7, pp.3, 2018, https://doi.org/10.12989/aas.2020.7.3.187