DOI QR코드

DOI QR Code

Detonation transmission with an abrupt change in area

  • Hsu, Yao-Chung (Department of Aeronautics and Astronautics, National Cheng Kung University) ;
  • Chao, Yei-Chin (Department of Aeronautics and Astronautics, National Cheng Kung University) ;
  • Chung, Kung-Ming (Aerospace Science and Technology Research Center, National Cheng Kung University)
  • Received : 2017.07.18
  • Accepted : 2018.01.31
  • Published : 2018.09.25

Abstract

Detonation transmission between propane/oxygen (donor) and propane/air (acceptor) with an abrupt area change is experimentally studied. In the donor, there are two types of incident detonation waves: A self-sustained Chapman-Jouguet (CJ) detonation wave and an overdriven detonation wave that is a result of the difference in the initial donor pressure ratios. The piston work is used to characterize the strength of the incident detonation wave. For an incident CJ detonation wave, the re-initiation of a detonation wave in the acceptor depends on the initial pressure in the donor and the expansion ratio. The axisymmetric and non-axisymmetric soot patterns respectively correspond to direct detonation and detonation re-initiation. For an incident overdriven detonation wave, the re-initiation of a detonation wave in the acceptor strongly depends on the degree of overdrive.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Alhussan, K., Assad, M. and Penazkov, O. (2016), "Analysis of the actual thermodynamic cycle of the detonation engine", Appl. Therm. Eng., 107, 339-344. https://doi.org/10.1016/j.applthermaleng.2016.03.103
  2. Bauer, P., Presles, H.N., Heuze, O. and Brochet, C. (1986), "Measurement of cell lengths in the detonation front of hydrocarbon oxygen and nitrogen mixtures at elevated initial pressures", Combust. Flame, 64(1), 113-123. https://doi.org/10.1016/0010-2180(86)90102-1
  3. Ciccarelli, G. and Dorofeev, S. (2008), "Flame acceleration and transition to detonation in ducts", Prog. Energy Combust. Sci., 34(4), 499-550. https://doi.org/10.1016/j.pecs.2007.11.002
  4. Desbordes, D. and Vachon, M. (1986), "Critical diameter of diffraction for strong plane detonations", Prog. Astro. Aero., 106(1), 131-143.
  5. Dorofeev, S. (2011), "Flame acceleration and explosion safety applications", Proceedings Combust. Institute, 33(2), 2161-2175. https://doi.org/10.1016/j.proci.2010.09.008
  6. Edwards, D., Thomas, G.O. and Nettleton, M.A. (1979), "The diffraction of a planar detonation wave at an abrupt area change", J. Fluid Mech., 95(1), 79-96. https://doi.org/10.1017/S002211207900135X
  7. Fan, Z.C., Fan, W., Tu, H., Li, J. and Yan, C. (2013), "The effect of fuel pretreatment on performance of pulse detonation rocket engines", Exp. Therm. Fluid Sci., 41, 130-142.
  8. Glassman, I., Yetter, R.A. and Glumac, N.G. (2014), Combustion, Academic press, MA, U.S.A.
  9. Hsu, Y.C., Chao, Y.C. and Chung, K.M. (2016), "The initial pressure effect on detonation propagation across a mixture", Adv. Mech. Eng., 8(7), 1-9.
  10. Joshi, D.D. and Lu, F.K. (2016), "Unsteady thrust measurements for pulse detonation engines", J. Propulsion Power, 32(1), 225-236. https://doi.org/10.2514/1.B35520
  11. Kailasanath, K. (2003), "Recent developments in the research on pulse detonation engines", AIAA J., 41(2), 145-159. https://doi.org/10.2514/2.1933
  12. Knystautas, R., Lee, J.H. and Guirao, C.M. (1982), "The critical tube diameter for detonation failure in hydrocarbon-air mixtures", Combust. Flame, 48, 63-83. https://doi.org/10.1016/0010-2180(82)90116-X
  13. Knystautas, R., Guirao, C., Lee, J.H. and Sulmistras, A. (1984), "Measurement of cell size in hydrocarbonair mixtures and predictions of critical tube diameter, critical initiation energy and detonability limits", Prog. Astro. Aero., 94, 23-37.
  14. Krivosheev, P.N. and Penyaz'kov, O.G. (2011), "Reducing the critical pressure of detonation initiation in transmission to a semiconfined volume", Combust. Explos. Shock Waves, 47(3), 323-329. https://doi.org/10.1134/S0010508211030099
  15. Kuznetsov, M.S., Dorofeev, S.B., Efimenko, A.A., Alskseev, V.I. and Breitung, W. (1997), "Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture", Shock Waves, 7(5), 297-304. https://doi.org/10.1007/s001930050084
  16. Kuznetsov, M.S., Alekseev, V.I., Dorofeev, S.B., Matsukov, D. and Boccio, J.L. (1998), "Detonation propagation, decay and reinitiation in nonuniform gaseous mixtures", Symposium on Combust., 27(2), 2241-2247. https://doi.org/10.1016/S0082-0784(98)80073-8
  17. Lee, J.H. and Matsui, H. (1977), "A comparison of the critical energies for direct initiation of spherical detonations in acetylene oxygen mixtures", Combust. Flame, 28, 61-66. https://doi.org/10.1016/0010-2180(77)90008-6
  18. Lee, J.H. and Moen, I. (1980), "The mechanisms of transition from deflagration to detonation in vapor cloud explosions", Progress Energy Combust. Sci., 6(4), 359-389. https://doi.org/10.1016/0360-1285(80)90011-8
  19. Li, J.M., Lai, W.H. and Chung, K.M. (2006), "Tube diameter effect on deflagration-to-detonation transition of propane-oxygen mixtures", Shock Waves, 16(2), 109-117. https://doi.org/10.1007/s00193-006-0056-8
  20. Li, J.M., Lai, W.H., Chung, K.M. and Lu, F.K. (2008), "Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air", Combust. Flame, 154(3), 331-345. https://doi.org/10.1016/j.combustflame.2008.04.010
  21. Li, J.M., Chung, K.M. and Hau, Y.C. (2015), "Diaphragm effect on the detonation wave transmission across the interface between two mixtures", Combust. Explos. Shock Waves, 51(6), 717-721. https://doi.org/10.1134/S0010508215060131
  22. Lu, F.K., Ortiz, A.A., Li, J.M., Kim, C.H. and Chung, K.M. (2009), "Detection of shock and detonation wave propagation by cross correlation", Mech. Syst. Signal Pr., 23(4), 1098-1111. https://doi.org/10.1016/j.ymssp.2008.11.001
  23. Lu, F.K. and Braun, E.M. (2014), "Rotating detonation wave propulsion: Experimental challenges, modeling and engine concepts", J. Propulsion Power, 30(5), 1125-1142. https://doi.org/10.2514/1.B34802
  24. Moen, I., Bjerketvedt, D., Jens, A. and Thibault, P.A. (1985), "Transition to detonation in a large fuel-air cloud", Combust. Flame, 61(3), 285-291. https://doi.org/10.1016/0010-2180(85)90109-9
  25. Moen, I. (1993), "Transition to detonation in fuel-air explosive clouds", J. Hazardous Materials, 33(2), 159-192. https://doi.org/10.1016/0304-3894(93)85052-G
  26. Ohyagi, S., Obara, T., Hoshi, S., Cai, P. and Yoshihashi, T. (2002), "Diffraction and re-initiation of detonations behind a backward-facing step", Shock Waves, 12(3), 221-226. https://doi.org/10.1007/s00193-002-0156-z
  27. Oran, E.S. and Gamezo, V.N. (2007), "Origins of the deflagration-to-detonation transition in gas-phase combustion", Combust. Flame, 148(1-2), 4-47. https://doi.org/10.1016/j.combustflame.2006.07.010
  28. Pandey, K.M. and Debnath, P. (2016), "Review on recent advances in pulse detonation engines", J. Combust., 2016, 1-16.
  29. Pintgen, F. and Shepherd, J. (2009), "Detonation diffraction in gases", Combust. Flame, 156(3), 665-677. https://doi.org/10.1016/j.combustflame.2008.09.008
  30. Reynolds, W. (1986), "The element potential method for chemical equilibrium analysis: Implementation in the interactive program STANJAN", ME 270 HO 7; Stanford University, U.S.A.
  31. Sochet, I., Lamy, T., Brossard, J., Vaglio, C. and Cayzac, R. (1999), "Critical tube diameter for detonation transmission and critical initiation energy of spherical detonation", Shock Waves, 9(2), 113-123. https://doi.org/10.1007/s001930050146
  32. Sorin, R., Zitoun, R., Khasainov, B. and Desbordes, D. (2009), "Detonation diffraction through different geometries", Shock Waves, 19(1), 11-23. https://doi.org/10.1007/s00193-008-0179-1
  33. Strehlow. R.A. (1969), "Nature of transverse waves in detonations", Astronautica Acta, 14(5), 539-548.
  34. Urtiew, P. and Oppenheim, A. (1966), "Experimental observations of the transition to detonation in an explosive gas", Proc. Royal Soc. London. Series A, Math. Phys. Sci., 295, 13-28. https://doi.org/10.1098/rspa.1966.0223
  35. Vasil'ev, A. (1988), "Diffraction of multifront detonation". Combust. Explos. Shock Waves, 24(1), 92-99. https://doi.org/10.1007/BF00749081
  36. Vasil'ev, A., Drozdov, M.S. and Khidirov, S.G. (2006), "Nonclassical regimes of wave diffraction in combustible mixtures", Combust., Explos. Shock Waves, 42(6), 746-752. https://doi.org/10.1007/s10573-006-0110-y
  37. Wang, K., Fan, W., Yan, Y., Zhu, X. and Yan, C. (2011), "Operation of a rotary-valved pulse detonation rocket engine utilizing liquid-kerosene and oxygen", Chinese J. Aeronautics, 24(6), 726-733. https://doi.org/10.1016/S1000-9361(11)60085-X
  38. Wen, C.S., Chung, K.M. and Hsu, Y.C. (2015), "Smoked foil on deflagration-to-detonation transition", J. Propulsion Power, 31(3), 967-969. https://doi.org/10.2514/1.B35554
  39. Wu, M.H. and Kuo, W.C. (2012), "Transition to detonation of an expanding flame ring in a sub-millimeter gap", Combust. Flame, 159(3), 1366-1368. https://doi.org/10.1016/j.combustflame.2011.09.008
  40. Yang, C., Wu, X., Ma, H., Peng, L. and Gao, J. (2016), "Experimental research on initiation characteristics of a rotating detonation engine", Exp. Therm. Fluid Sci., 71, 154-163. https://doi.org/10.1016/j.expthermflusci.2015.10.019
  41. Yao, S. and Wang, J. (2016), "Multiple ignitions and the stability of rotating detonation waves", Appl. Therm. Eng., 108, 927-936. https://doi.org/10.1016/j.applthermaleng.2016.07.166

Cited by

  1. Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle vol.7, pp.3, 2018, https://doi.org/10.12989/aas.2020.7.3.187