DOI QR코드

DOI QR Code

Pharmacological Systemic Analysis of Curcumae Radix in Lipid Metabolism

시스템 분석을 통한 지질대사에서 울금의 약리작용

  • Jo, Han Byeol (School of Korean Medicine, Pusan National University) ;
  • Kim, Ji Young (School of Korean Medicine, Pusan National University) ;
  • Kim, Min Sung (School of Korean Medicine, Pusan National University) ;
  • An, Won Gun (School of Korean Medicine, Pusan National University) ;
  • Lee, Jang-Cheon (School of Korean Medicine, Pusan National University)
  • 조한별 (부산대학교 한의학전문대학원) ;
  • 김지영 (부산대학교 한의학전문대학원) ;
  • 김민성 (부산대학교 한의학전문대학원) ;
  • 안원근 (부산대학교 한의학전문대학원) ;
  • 이장천 (부산대학교 한의학전문대학원)
  • Received : 2018.07.05
  • Accepted : 2018.08.30
  • Published : 2018.08.31

Abstract

Objectives : This study is a pharmacological network approach, aimed to identify the potential active compounds contained in Curcumae Radix, and their associated targets, to predict the various bio-reactions involved, and finally to establish the cornerstone for the deep-depth study of the representative mechanisms. Methods : The active compounds of Curcumae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : The target information from 32 potential active compounds of Curcumae Radix was collected through TCMSP analysis. The active compounds interact with 133 target genes engaging in total of 885 biological pathways. The most relevant pathway was the lipid-related metabolism, in which 3 representative active compounds were naringenin, oleic acid, and ${\beta}-sitosterol$. The mostly targeted proteins in the lipid pathway were ApoB, AKT1 and PPAR. Conclusions : The pharmacological network analysis is convenient approach to predict the overall metabolic mechanisms in medicinal herb research, which can reduce the processes of various experimental trial and error and provide key clues that can be used to validate and experimentally verify the core compounds.

Keywords

References

  1. Navar-Boggan AM, Peterson ED, D'Agostino RB, Neely B, Sniderman AD, Pencina MJ. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation. 2015;131:451-8. https://doi.org/10.1161/CIRCULATIONAHA.114.012477
  2. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol. 2014;43: 69-77. https://doi.org/10.1093/ije/dyt228
  3. Kiortsis DN, Filippatos TD, Mikhailidis DP, Elisaf MS, Liberopoulos EN. Statin-associated adverse effects beyond muscle and liver toxicity. Atherosclerosis.2007;195(1):7-16. https://doi.org/10.1016/j.atherosclerosis.2006.10.001
  4. Silva MA, Swanson AC, Gandhi PJ, Tataroni GR. Statin-related adverse events: a metaanalysis. Clin Ther. 2006;28:26-35. https://doi.org/10.1016/j.clinthera.2006.01.005
  5. Hartgers ML, Ray KK, Hovingh GK. New Approaches in Detection and Treatment of Familial Hypercholesterolemia. Curr Cardiol Rep. 2015;17:109. https://doi.org/10.1007/s11886-015-0665-x
  6. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A. 2000;97:1433-37. https://doi.org/10.1073/pnas.030540597
  7. Ong ES, binte Apandi SN. Determination of berberine and strychnine in medicinal plants and herbal preparations by pressurized liquid extraction with capillary zone electrophoresis. Electrophoresis. 2001;22:2723-29 https://doi.org/10.1002/1522-2683(200108)22:13<2723::AID-ELPS2723>3.0.CO;2-O
  8. Van Der Graaf PH, Gabrielsson J. Pharmacokineticpharmacodynamic reasoning in drug discovery and early development. Future Med Chem. 2009;1:1371-74. https://doi.org/10.4155/fmc.09.124
  9. Herbology Textbook Committee for Nationwide School of Korean Medicine Complilation. Herbology 2nd. Seoul: Yeongrimsa. 2017:452-3.
  10. Han JM, Lee JS, Kim HG, Seol IC. Im HJ, Cho JH, et al. Synergistic effects of Artemisia iwayomogi and Curcuma longa radix on highfat diet-induced hyperlipidemia in a mouse model. J Ethnopharmacol. 2015;173:217-24. https://doi.org/10.1016/j.jep.2015.07.021
  11. Lu B, Xu L, Yu L, Zhang L. Extract of radix curcumae prevents gastric cancer in rats. Digestion. 2008;77:87-91. https://doi.org/10.1159/000122228
  12. Dong JY, Ma XY, Cai XQ, Yan PC, Yue L, Lin C, et al. Sesquiterpenoids from Curcuma wenyujin with anti-influenza viral activities. Phytochemistry. 2013;85:122-8. https://doi.org/10.1016/j.phytochem.2012.09.008
  13. Huang X, Ly B, Zhang S, Dai Q, Chen BB, Meng LN. Effects of radix curcumae-derived diterpenoid C on Helicobacter pylori-induced inflammation and nuclear factor kappa B signal pathways. World J Gastroenterol. 2013;19: 5085-93. https://doi.org/10.3748/wjg.v19.i31.5085
  14. Lim CB, Ky N, Ng HM, Hamza MS, Zhao Y. Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo. Integr Cancer Ther. 2010;9:36-49. https://doi.org/10.1177/1534735409359773
  15. Oh H, Park H, Ju MS, Jung S, Oh MS. Comparative study of anti-oxidant and anti-inflammatory activities between Curcumae longae Radix and Curcumae longae Rhizoma. Korean Journal of Herbology. 2010;25:83-91.
  16. Nelson KM, Jahlin JL, Bisson J, Grahm J, Pauli GF, Walters MA. The Essential Medicinal Chemistry of Curcumin. J Med Chem. 2017; 60(5):1620-37. https://doi.org/10.1021/acs.jmedchem.6b00975
  17. Heger M. Drug Screening : Don’t discount all curcumin trial data. Nature. 2017;543:47. https://doi.org/10.1038/543047a
  18. Ding L, Li J, Song B, Xiao X, Zhang B, Qi M, et al. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol. 2016;304:99-109. https://doi.org/10.1016/j.taap.2016.05.011
  19. Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, et al. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism. 2008;57: 1576-83. https://doi.org/10.1016/j.metabol.2008.06.014
  20. Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol. 2017;13:953-72. https://doi.org/10.1080/17425255.2017.1360279
  21. Fazal Y, Fatima SN, Shahid SM, Mahboob T. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity. J Renin Angiotensin Aldosterone Syst. 2015;16:1046-51. https://doi.org/10.1177/1470320314545777
  22. Srivastava RM, Singh S, Dubey SK, Misra K, Khar A. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol. 2011;11:331-41. https://doi.org/10.1016/j.intimp.2010.08.014
  23. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander Jagt DL. Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem. 2005;13:3811-20. https://doi.org/10.1016/j.bmc.2005.03.035
  24. Suh SY, An WG. Systems Pharmacological Approach of Pulsatillae Radix on Treating Crohn's Disease. Evid Based Complement Alternat Med. 2017:4198035.
  25. Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, et al. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One. 2012;7:e37608. https://doi.org/10.1371/journal.pone.0037608
  26. Shen M, Tian S, Li Y, Li Q, Xu X, Wang J, Hou T. Drug-likeness analysis of traditional Chinese medicines: 1. Property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. J Cheminform. 2012;4:31. https://doi.org/10.1186/1758-2946-4-31
  27. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012; 13(6): 6964-82. https://doi.org/10.3390/ijms13066964
  28. Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2:2111-19. https://doi.org/10.1038/nprot.2007.303
  29. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res.2006;34:D187-91. https://doi.org/10.1093/nar/gkj161
  30. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431-2. https://doi.org/10.1093/bioinformatics/btq675
  31. Liu F, Bai X, Yang FQ, Zhang XJ, Hu Y, Li P, Wan JB. Discriminating from species of Curcumae Radix (Yujin) by a UHPLC/QTOFMS- based metabolomics approach. Chin Med. 2016;11:21. https://doi.org/10.1186/s13020-016-0095-8
  32. Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha. PLoS One. 2010;5:e12399. https://doi.org/10.1371/journal.pone.0012399
  33. Mulvihill EE, Alister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, et al. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes. 2009;58:2198-210. https://doi.org/10.2337/db09-0634
  34. Hussein O, Grosovski M, Lasri E, Svalb S, Ravid U, Assy N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J Gastroenterol. 2007;13:361-8. https://doi.org/10.3748/wjg.v13.i3.361
  35. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin. Invest. 2005;115: 1343-51. https://doi.org/10.1172/JCI23621
  36. Heinemann T, Kullak-Ublick GA, Pietruck B, von Bergmann K. Mechanisms of action of plant sterols on inhibition of cholesterol absorption. Comparison of sitosterol and sitostanol. Eur J Clin Pharmacol. 1991;40: S59-63. https://doi.org/10.1007/BF03216292
  37. Crooke RM, Graham MJ, Lemonidis KM, Whipple CP, Koo S, Perera RJ. An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res. 2005;46:872-84. https://doi.org/10.1194/jlr.M400492-JLR200
  38. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19:892-900. https://doi.org/10.1038/nm.3200
  39. Rai S, Bhatnagar S. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Target: A Network View. OMICS. 2016;20:152-68. https://doi.org/10.1089/omi.2015.0172
  40. Chaudhary LR, Hruska KA. Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem. 2003; 89:1-5. https://doi.org/10.1002/jcb.10495