참고문헌
- Buccino, M., Banfi, D., vicinanza, D., et al., 2012. Non breaking wave forces at the front face of seawave slotcone generators. Energies 5, 4779-4803. https://doi.org/10.3390/en5114779
- Buccino, M., Vicinanza, D., Salerno, D., et al., 2015. Nature and magnitude of wave loadings at seawave slot-cone generators. Ocean. Eng. 95, 34-58. https://doi.org/10.1016/j.oceaneng.2014.11.038
- Chini, N., Stansby, P.K., 2012. Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast. Eng. 65, 27-37. https://doi.org/10.1016/j.coastaleng.2012.02.009
- Contestabile, P., Ferrante, V., Lauro, E.D., Vicinanza, D., 2016. Prototype overtopping breakwater for wave energy conversion at Port of Naples. In: Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece.
- Contestabile, P., Ferrante, V., Lauro, E.D., Vicinanza, D., 2017. Full-scale prototype of an overtopping breakwater for wave energy conversion. In: Conference on Coastal Engineering Proceedings, pp. 1-12.
- Contestabile, P., Iuppa, C., Lauro, E.D., et al., 2017. Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion. Coast. Eng. 122, 60-74. https://doi.org/10.1016/j.coastaleng.2017.02.001
- J. Cruz. Ocean Wave Energy - Current Status and Future Perspectives. Springer Series in Green Energy and Technology, Berlin, Germany.
- Falcao, A.F.O., 2010. Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. 14(3), 899-918. http://www.jospa.ie (Accessed in 20 May 2016). https://doi.org/10.1016/j.rser.2009.11.003
- Iuppa, C., Contestabile, P., Cavallaro, L., et al., 2016. Hydraulic performance of an innovative breakwater for overtopping wave energy conversion. Sustainability. https://doi.org/10.3390/su8121226.
- Jungrungruengtaworn, S., Hyun, B.S., 2017. Influence of slot width on the performance of multi-stage overtopping wave energy converters. Int. J. Nav. Archit. Ocean Eng. https://doi.org/10.1016/j.ijnaoe.2017.02.005.
- Kofoed, J.P., 2002. Wave Overtopping of Marine Structures: Utilization of Wave Energy. Hydraulics & Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University, Aalborg.
- Kofoed, J.P., 2006. Vertical distribution of wave overtopping for design of multi level overtopping based wave energy converters. In: 30th International Conference on Costal Engineering, San Diego, USA.
- Kofoed, J.P., Osaland, E., 2005. Crest level optimization of the multi-level reservoir overtopping based wave energy converter Seawave Slot-cone Generator. In: Proceedings of the 6th European Wave & Tidal Conference, Glasgow, UK.
- Kofoed, J.P., Hald, T., Frigaard, P.B., 2002. Experimental study of a multi level overtopping wave power device. In: Proceedings of the 10th Congress of International Maritime Association of the Mediterranean, Crete, Greece.
- Lin, T.C., Hwang, K.S., 2012. An experimental observation of a solitary wave impingement run-up and overtopping on a sea wall. J. Hydrodyn. 24(1), 76-85. https://doi.org/10.1016/S1001-6058(11)60221-7
- Z. Liu, H. D. Shi, H. Y. Zhao, et al. A multi-level overtopping wave energy converter. Pat. Auth. No. CN2013 10590330.6, 2014.
- Liu, Z., Shi, H., Cui, Y., Kim, K., 2017. Experimental Study on overtopping performance of a circular ramp wave energy converter. Renew. Energy 104, 163-176. https://doi.org/10.1016/j.renene.2016.12.040
- Maliki, A.Y., Musa, M.A., Ahmad, M.F., et al., 2017. Comparison of numerical and experimental results for overtopping discharge of the OBREC wave energy converter. J. Eng. Sci. Technol. 12(5), 1337-1353.
- Margheritini, L., Vicinanza, D., Frigaard, P., 2009. SSG wave energy converter: design, reliability and hydraulic performance of an innovative overtopping device. Renew. Energy 34, 1371-1380. https://doi.org/10.1016/j.renene.2008.09.009
- Mehmet, A.A., Mehmet, K.S., 2017. Experimental study for the hydraulic efficiency of an overtopping type wave energy converter with a circular runup ramp. J. BAUN. Inst. Sci. Technol. 19(1), 118-131.
- Ministry of Transport of the People's Republic of China, 2012. Code of Design and Construction of Breakwaters, JTS-154-1-2011 (In Chinese).
- Norgaard, J.Q.H., Andersen, T.L., Burcharth, H.F., et al., 2013. Analysis of overtopping flow on sea dikes in oblique and short-crested waves. Coast. Eng. 76, 43-54. https://doi.org/10.1016/j.coastaleng.2013.01.012
- Orszaghova, J., Taylor, P.H., Borthwick, A.G.L., Raby, A.C., 2014. Importance of second-order wave generation for focused wave group run-up and overtopping. Coast. Eng. 94, 63-79. https://doi.org/10.1016/j.coastaleng.2014.08.007
- Palma, G., Formentin, S.M., Zanuttigh, B., et al., 2016. Design optimization of a multifunctional wave energy device. In: Proceedings of the 2nd International Conference on Renewable Energies Offshore, Lisbon, Portugal.
- Romano, A., Bellotti, G., Briganti, R., Franco, L., 2015. Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: the role of the seeding number and of the test duration. Coast. Eng. 103, 15-21. https://doi.org/10.1016/j.coastaleng.2015.05.005
- Tanaka, H., Inami, T., Sakurada, T., 2015. Characteristics of volume of overtopping and water supply quantity for developing wave overtopping type wave power generation equipment. In: Proceedings of the 25th International Ocean and Polar Engineering Conference, Hawaii, USA.
- Tanaka, H., Inami, T., Sakurada, T., 2016. Researches and developments of wave overtopping type wave power generation. In: Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece.
- Tjugen, K.J., 1995. TAPCHAN ocean wave energy project at Java: updated project status. In: Proceedings of 2nd European Wave Tidal Energy Conference, Lisbon, Portugal, pp. 42-43.
- Tonelli, M., Petti, M., 2013. Numerical simulation of wave overtopping at coastal dikes and low-crested structures by means of a shock-capturing Boussinesq model. Coast. Eng. 79, 75-88. https://doi.org/10.1016/j.coastaleng.2013.04.007
- Van Der Meer, J.W., Janssen, J., 1994. Wave run-up and wave overtopping at dikes. Am. Soc. Civ. Eng. 12(2), 175-189.
- Vicinanza, D., Frigaard, P., 2008. Wave pressure acting on a seawave slot-cone generator. Coast. Eng. 55, 553-568. https://doi.org/10.1016/j.coastaleng.2008.02.011
- Vicinanza, D., Margheritini, L., Kofoed, J.P., Buccino, M., 2012. The SSG wave energy converter: performance, status and Recent Developments. Energies 5, 193-226. https://doi.org/10.3390/en5020193
- Vicinanza, D., Contestabile, P., Norgaard, J.Q.H., Anderson, T.L., 2014. Innovative rubble mound breakwaters for overtopping wave energy conversion. Coast. Eng. 88, 154-170. https://doi.org/10.1016/j.coastaleng.2014.02.004
- Williams, H.E., Briganti, R., Pullen, T., 2014. The role of offshore boundary conditions in the uncertainty of numerical prediction of wave overtopping using non-linear shallow water equations. Coast. Eng. 89, 30-44. https://doi.org/10.1016/j.coastaleng.2014.03.003
- Working Group on Wave Energy Conversion, 2003. Wave Energy Conversion. Elsevier Ocean Engineering Book Series, vol. 6. Elsevier Ltd, Oxford, UK.
- Xue, Y., Xu, W.L., Luo, S.J., et al., 2011. Experimental study of dam-break flow in cascade reservoirs with steep bottom slope. J. Hydrodyn. 23(4), 491-497. https://doi.org/10.1016/S1001-6058(10)60140-0
피인용 문헌
- Numerical Modeling of the Wave Energy Propagation in the Iberian Nearshore vol.11, pp.4, 2018, https://doi.org/10.3390/en11040980
- Numerical and experimental study on hydrodynamic performance of multi-level OWEC vol.10, pp.4, 2018, https://doi.org/10.12989/ose.2020.10.4.359
- Three-dimensional effects on the performance of multi-level overtopping wave energy converter vol.1137, pp.1, 2018, https://doi.org/10.1088/1757-899x/1137/1/012016