DOI QR코드

DOI QR Code

Incentive Optimization Scheme for Small Cell Base Station Cooperation in Heterogeneous Networks

이기종 네트워크에서 스몰셀 기지국 협력을 위한 인센티브 최적화 기법

  • 정석원 (충북대학교 정보통신공학과) ;
  • 김태준 (충북대학교 정보통신공학부)
  • Received : 2018.03.19
  • Accepted : 2018.06.07
  • Published : 2018.08.31

Abstract

Mobile traffic is increasing consistently, and mobile carriers are becoming more and more hard to meet this ever-increasing mobile traffic demand by means of additional installation of base stations. To overcome this problem, heterogeneous networks, which can reuse space and frequency by installing small cells such as femto cells in existing macro cells, were introduced. However, existing macro cell users are difficult to increase the spectral efficiency without the cooperation of femto owners. Femto owners are also reluctant to accommodate other mobile stations in their femto stations without proper incentive. In this paper, a method of obtaining the optimal incentive is proposed, which adopts a utility function based on the logarithm of throughput of mobile stations, and the incentive is calculated to maximize the utility of the entire network.

모바일 트래픽은 계속해서 폭발적으로 증가하고 있으며 이동통신 사업자들은 기지국의 추가 설치만으로 계속해서 증가하는 모바일 트래픽 요구량을 충족하는 것이 점점 어려워지고 있다. 이를 극복하기 위해 기존의 매크로 셀에 펨토셀과 같은 스몰 셀을 설치하여 공간 및 주파수의 재사용이 가능한 이기종 네트워크(Heterogeneous network) 개념이 도입되었다. 그러나 펨토 소유자의 협력 없이는 기존의 매크로셀 사용자가 펨토셀에 연결되어 전체 네트워크의 효율성을 증대시키기 어렵다. 펨토 소유자도 적절한 인센티브(incentive)를 받지 않고는 다른 단말들을 자신의 펨토 기지국에 수용할 필요성을 느끼지 못한다. 본 논문에서는 새로운 단말을 펨토 셀에 추가하기 위하여 펨토 소유자에 제시할 최적의 인센티브를 도출하는 방법을 제시한다. 단말의 전송률을 바탕으로 이득함수를 구성하였으며 네트워크 전체의 이득함수를 최대화 할 수 있는 인센티브를 계산한다.

Keywords

References

  1. Cisco. (Feb. 2016). "Cicso Visual Networking Index: Global mobile data traffic forecast update, 2015-2010," White Paper. [Online]. Available: www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
  2. A. Ghosh, R. Ratasuk, B. Mondal, N.Mangalvedhe, and T. Thomas, “LTE-advanced: Next-generation wireless broadband technology,” IEEE Wirel. Commun., Vol. 17, No. 3, pp. 10-22, Jun. 2010. https://doi.org/10.1109/MWC.2010.5490974
  3. V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell Network: a Survey,” IEEE Communications Magazine, Vol. 46, No. 8, pp. 4316-4328, Aug. 2009.
  4. G. de la Roche, A. Valcarce, D. Lopez-Perez, and J. Zhang, “Access Control Mechanisms for Femtocells,” IEEE Communications Magazine, Vol. 48, No. 1, pp. 33-39, Jan. 2010. https://doi.org/10.1109/MCOM.2010.5394027
  5. Y. Qi and H. Wang, "Incentive Pricing Mechanism for Hybrid Access in Femtocell Networks," IEEE Communications Letters, Vol. 21, No. 5, May 2017.
  6. S. Hua, X. Zhuo, and S. S. Panwar, "A Truthful Auction based Incentive Framework for Femtocell Access," Wireless Communications and Networking Conference (WCNC), pp. 2271-2276, IEEE, 2013.
  7. S. M. Moon, B. R. Kim, D. J. Kim, and I. T. Hwang, “Interference management with cell selecting using cell range expansion and ABS in heterogeneous network based on LTEAdvanced,” KIEE ’13-08, Vol. 50, No. 8, pp. 1967-1972, 2013.
  8. 3GPP TS 36.211 version 10.0.0 "Evolved Universal Terrestrial Radio Access (E-UTRA) Physical channels and modulation," Technical Specification 3GPP, Jan. 2011.
  9. B. Bae, B. Shin, and D. Hong, “A Decesion scheme of amount of required resources for adaptive resource reuse in wireless multi-hop systems,” The Journal of Korean Institute of Communications and Information Sciences, Vol. 34, No. 3A, pp. 229-234, Feb. 2009.
  10. 3GPP TR 36.942 version 9.0.1 "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios," Technical Report 3GPP Apr. 2010.