DOI QR코드

DOI QR Code

Age of Postmenopause Women: Effect of Soy Isoflavone in Lipoprotein and Inflammation Markers

  • Received : 2018.06.15
  • Accepted : 2018.11.05
  • Published : 2018.12.31

Abstract

Objectives: Menopause is associated with adverse metabolic changes in plasma lipoprotein and inflammation markers. Estrogens have beneficial effects on lipid metabolism and inflammation. Isoflavones (ISO) have structurally similar to estradiol. Our objective was analize the effect of soy-ISO on serum lipid and inflammatory markers (sP-selectin and sCD40L) in postmenopausal women. Methods: A 12-week randomized, double-blind, placebo-controlled intervention with soy-ISO (50 mg, twice daily) was conducted in 35 healthy postmenopausal women (55-72 years old). The women were divided in 2 groups: 20 were allocated to soy-ISO, and 15 to a placebo group. Results: The changes of total cholesterol (TC), triglycerides, low-density lipoproteins-cholesterol (LDL-C), high-density lipoprotein-cholesterol, Apo-A1, sP-selectin and sCD40L in 2 groups before and after 12-week treatment showed no statistical significance. In subgroup analysis, soy-ISO supplementation significantly decreased the levels of TC, LDL-C and sCD40L in women under 65 years old, and with null effects on serum lipid and inflammation markers in women over 65 years old. Conclusions: Soy-ISO did not significantly favorable effects on the lipid profile and inflammatory markers in postmenopausal women. However, in women under 65 years of age, soy-ISO significantly decreased the TC, LDL-C and sCD40L, whereas, no effects on lipid profile and inflammation markers in women over 65 years old were observed.

Keywords

Acknowledgement

Supported by : Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)

References

  1. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science 2005; 308: 1583-7. https://doi.org/10.1126/science.1112062
  2. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013; 19: 197-209. https://doi.org/10.1016/j.molmed.2012.12.007
  3. Chahal HS, Drake WM. The endocrine system and ageing. J Pathol 2007; 211: 173-80. https://doi.org/10.1002/path.2110
  4. Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003; 349: 523-34. https://doi.org/10.1056/NEJMoa030808
  5. Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998; 280: 605-13. https://doi.org/10.1001/jama.280.7.605
  6. Cano A, Garcia-Perez MA, Tarin JJ. Isoflavones and cardiovascular disease. Maturitas 2010; 67: 219-26. https://doi.org/10.1016/j.maturitas.2010.07.015
  7. Bertonazzi A, Nelson B, Salvador J, Umland E. The smallest available estradiol transdermal patch: a new treatment option for the prevention of postmenopausal osteoporosis. Womens Health (Lond) 2015; 11: 815-24. https://doi.org/10.2217/whe.15.64
  8. Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, et al. Soy isoflavones: a safety review. Nutr Rev 2003; 61: 1-33. https://doi.org/10.1301/nr.2003.janr.1-33
  9. Vitale DC, Piazza C, Melilli B, Drago F, Salomone S. Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 2013; 38: 15-25. https://doi.org/10.1007/s13318-012-0112-y
  10. An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC. Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 2001; 276: 17808-14. https://doi.org/10.1074/jbc.M100953200
  11. Messina M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016; 8: E754. https://doi.org/10.3390/nu8120754
  12. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 2007; 85: 1148-56. https://doi.org/10.1093/ajcn/85.4.1148
  13. Fujimoto TT, Noda M, Takafuta T, Shimomura T, Fujimura K, Kuramoto A. Expression and functional characterization of the P-selectin glycoprotein ligand-1 in various cells. Int J Hematol 1996; 64: 231-9. https://doi.org/10.1016/0925-5710(96)00474-4
  14. Myers DD, Hawley AE, Farris DM, Wrobleski SK, Thanaporn P, Schaub RG, et al. P-selectin and leukocyte microparticles are associated with venous thrombogenesis. J Vasc Surg 2003; 38: 1075-89. https://doi.org/10.1016/S0741-5214(03)01033-4
  15. Andre P, Hartwell D, Hrachovinova I, Saffaripour S, Wagner DD. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci U S A 2000; 97: 13835-40. https://doi.org/10.1073/pnas.250475997
  16. Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 1997; 96: 396-9. https://doi.org/10.1161/01.CIR.96.2.396
  17. Lindmark E, Tenno T, Siegbahn A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression. Arterioscler Thromb Vasc Biol 2000; 20: 2322-8. https://doi.org/10.1161/01.ATV.20.10.2322
  18. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502.
  19. Allanore Y, Borderie D, Meune C, Lemarechal H, Weber S, Ekindjian OG, et al. Increased plasma soluble CD40 ligand concentrations in systemic sclerosis and association with pulmonary arterial hypertension and digital ulcers. Ann Rheum Dis 2005; 64: 481-3.
  20. Miller VT, LaRosa J, Barnabei V, Kessler C, Levin G, Smith-Roth A, et al. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. The Writing Group for the PEPI Trial. JAMA 1995; 273: 199-208. https://doi.org/10.1001/jama.1995.03520270033028
  21. Alwers R, Urdinola J, Onatra W, Sanchez F, Posso H. Changes in normal lipid profile of menopausal women with combined hormone replacement therapy. Comparative clinical trial of two hormonal combinations (conjugated estrogens/medroxyprogesterone acetate versus estradiol valerate/cyproterone acetate). Maturitas 1999; 32: 41-50. https://doi.org/10.1016/S0378-5122(99)00013-4
  22. Harman SM, Vittinghoff E, Brinton EA, Budoff MJ, Cedars MI, Lobo RA, et al. Timing and duration of menopausal hormone treatment may affect cardiovascular outcomes. Am J Med 2011; 124: 199-205. https://doi.org/10.1016/j.amjmed.2010.09.021
  23. Hodis HN, Mack WJ, Shoupe D, Azen SP, Stanczyk FZ, Hwang-Levine J, et al. Methods and baseline cardiovascular data from the Early versus Late Intervention Trial with Estradiol testing the menopausal hormone timing hypothesis. Menopause 2015; 22: 391-401. https://doi.org/10.1097/GME.0000000000000343
  24. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998; 139: 4252-63. https://doi.org/10.1210/endo.139.10.6216
  25. Oseni T, Patel R, Pyle J, Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta Med 2008; 74: 1656-65. https://doi.org/10.1055/s-0028-1088304
  26. Li J, Liu Y, Wang T, Zhao L, Feng W. Does genistein lower plasma lipids and homocysteine levels in postmenopausal women? A meta-analysis. Climacteric 2016; 19: 440-7. https://doi.org/10.1080/13697137.2016.1194388
  27. Mangano KM, Hutchins-Wiese HL, Kenny AM, Walsh SJ, Abourizk RH, Bruno RS, et al. Soy proteins and isoflavones reduce interleukin-6 but not serum lipids in older women: a randomized controlled trial. Nutr Res 2013; 33: 1026-33. https://doi.org/10.1016/j.nutres.2013.08.009
  28. Simental-Mendia LE, Gotto AM, Jr., Atkin SL, Banach M, Pirro M, Sahebkar A. Effect of soy isoflavone supplementation on plasma lipoprotein(a) concentrations: A metaanalysis. J Clin Lpiidol 2018; 12: 16-24. https://doi.org/10.1016/j.jacl.2017.10.004
  29. Nagasawa M, Zhu Y, Isoda T, Tomizawa D, Itoh S, Kajiwara M, et al. Analysis of serum soluble CD40 ligand (sCD40L) in the patients undergoing allogeneic stem cell transplantation: platelet is a major source of serum sCD40L. Eur J Haematol 2005; 74: 54-60. https://doi.org/10.1111/j.1600-0609.2004.00342.x
  30. Gerdes N, Seijkens T, Lievens D, Kuijpers MJ, Winkels H, Projahn D, et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arterioscler Thromb Vasc Biol 2016; 36: 482-90. https://doi.org/10.1161/ATVBAHA.115.307074
  31. Gresele P, Momi S. Inhibitors of the interaction between von Willebrand factor and platelet GPIb/IX/V. Handb Exp Pharmacol 2012: 287-309.
  32. Enomoto Y, Adachi S, Matsushima-Nishiwaki R, Doi T, Niwa M, Akamatsu S, et al. Thromboxane A(2) promotes soluble CD40 ligand release from human platelets. Atherosclerosis 2010; 209: 415-21. https://doi.org/10.1016/j.atherosclerosis.2009.10.024
  33. Guerrero JA, Lozano ML, Castillo J, Benavente-Garcia O, Vicente V, Rivera J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost 2005; 3: 369-76. https://doi.org/10.1111/j.1538-7836.2004.01099.x
  34. Munoz Y, Garrido A, Valladares L. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets. Thromb Res 2009; 123: 740-4. https://doi.org/10.1016/j.thromres.2008.07.011
  35. Gonzalez N, Garrido A, Acevedo I, Valladares L. In vitro effect of soy isoflavone and equol on soluble CD40L release stimulated by ristocetin in platelets from postmenopause women. JBiSE 2015; 8: 24-30. https://doi.org/10.4236/jbise.2015.81002

Cited by

  1. Effects of phytoestrogen supplementation on intermediate cardiovascular disease risk factors among postmenopausal women: a meta-analysis of randomized controlled trials vol.27, pp.9, 2020, https://doi.org/10.1097/gme.0000000000001566
  2. Blood pressure and cardiovascular risk factors in women treated for climacteric symptoms with acupuncture, phytoestrogens, or hormones vol.27, pp.9, 2018, https://doi.org/10.1097/gme.0000000000001626
  3. The effects of isolated soy protein, isolated soy isoflavones and soy protein containing isoflavones on serum lipids in postmenopausal women: A systematic review and meta-analysis vol.60, pp.20, 2018, https://doi.org/10.1080/10408398.2019.1689097
  4. Effects of soy isoflavones extract on the lipid profile and uterus in ovariectomized rats vol.37, pp.2, 2018, https://doi.org/10.1080/09513590.2020.1832068
  5. Genistein for glycolipid metabolism in postmenopausal women: a meta-analysis vol.24, pp.3, 2018, https://doi.org/10.1080/13697137.2020.1859473
  6. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review vol.13, pp.8, 2018, https://doi.org/10.3390/nu13082531