DOI QR코드

DOI QR Code

Sharing Pathological Mechanisms of Insomnia and Osteoporosis, and a New Perspective on Safe Drug Choice

  • Yi, Sun Shin (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University) ;
  • Chung, Soo-Ho (Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine) ;
  • Kim, Pan Soo (Bio-Center, Gyeonggido Business and Science Accelerator)
  • Received : 2018.10.21
  • Accepted : 2018.11.16
  • Published : 2018.12.31

Abstract

Lack of adequate sleep has become increasingly common in our 24/7 modern society. Reduced sleep has significant health consequences including metabolic and cardiovascular disorders, and mental problems including depression. In addition, although the increase in life expectancy has provided a dream of longevity to humans, the occurrence of osteoporosis is a big obstacle to this dream for both male and female. It is known that insomnia and bone health problems, which are very critical conditions in human life, interestingly, share a lot of pathogenesis in recent decades. Nevertheless, due to another side effects of the synthetic drugs being taken for the treatment of insomnia and osteoporosis, patients have substantial anxiety for the safety of drugs with therapeutic expectation. This review examines the pathogenesis shared by sleep and osteoporosis together and herbal medicine, which has recently been shown to be safe and efficacious in the treatment of both diseases other than synthetic drugs. We suggestions for how to treat osteoporosis. These efforts will be the first step toward enabling patients to have comfortable and safe prescriptions through a wide selection of therapeutic agents in the future.

Keywords

Acknowledgement

Supported by : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET)

References

  1. Te Lindert BHW, Itzhacki J, van der Meijden WP, Kringelbach ML, Mendoza J, Van Someren EJW. Bright environmental light ameliorates deficient subjective 'liking' in insomnia: an experience sampling study. Sleep 2018 http://dx.doi.org/10.1093/sleep/zsy022
  2. Passos GS, Poyares D, Santana MG, Teixeira AA, Lira FS, Youngstedt SD, et al. Exercise improves immune function, antidepressive response, and sleep quality in patients with chronic primary insomnia. Biomed Res Int 2014; 2014: 498961.
  3. Fifel K, Meijer JH, Deboer T. Long-term effects of sleep deprivation on neuronal activity in four hypothalamic areas. Neurobiol Dis 2018; 109: 54-63. https://doi.org/10.1016/j.nbd.2017.10.005
  4. Cizza G, Primma S, Csako G. Depression as a risk factor for osteoporosis. Trends Endocrinol Metab 2009; 20: 367-73. https://doi.org/10.1016/j.tem.2009.05.003
  5. Cizza G, Ravn P, Chrousos GP, Gold PW. Depression: a major, unrecognized risk factor for osteoporosis? Trends Endocrinol Metab 2001; 12: 198-203. https://doi.org/10.1016/S1043-2760(01)00407-6
  6. North American Menopause Society. Management of osteoporosis in postmenopausal women: 2006 position statement of The North American Menopause Society. Menopause 2006; 13: 340-67. https://doi.org/10.1097/01.gme.0000222475.93345.b3
  7. Sharma N, Natung T, Barooah R, Ahanthem SS. Effect of multiparity and prolonged lactation on bone mineral density. J Menopausal Med 2016; 22: 161-6. https://doi.org/10.6118/jmm.2016.22.3.161
  8. Choi CJ, Choi WS, Kim CM, Lee SY, Kim KS. Risk of sarcopenia and osteoporosis in male tuberculosis survivors: Korea National Health and Nutrition Examination Survey. Sci Rep 2017; 7: 13127. https://doi.org/10.1038/s41598-017-12419-y
  9. McCabe IC, Fedorko A, Myers MG, Jr., Leinninger G, Scheller E, McCabe LR. Novel leptin receptor signaling mutants identify location and sex-dependent modulation of bone density, adiposity, and growth. J Cell Biochem 2018 http://dx.doi.org/10.1002/jcb.27726
  10. Thadani SR, Ristow B, Blackwell T, Mehra R, Stone KL, Marcus GM, et al. Relationship of bisphosphonate therapy and atrial fibrillation/flutter: Outcomes of sleep disorders in older men (MrOS Sleep) study. Chest 2016; 149: 1173-80. https://doi.org/10.1016/j.chest.2015.11.022
  11. Schmid SM, Hallschmid M, Schultes B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol 2015; 3: 52-62. https://doi.org/10.1016/S2213-8587(14)70012-9
  12. Fink JE, Hackney AC, Matsumoto M, Maekawa T, Horie S. Mobility and biomechanical functions in the aging male: Testosterone and the locomotive syndrome. Aging Male 2018 http://dx.doi.org/10.1080/13685538.2018.1504914
  13. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 2011; 96: 2703-13. https://doi.org/10.1210/jc.2011-0047
  14. Munhoz da Rocha Lemos Costa T, Costa FM, Hoffman Jonasson T, Aguiar Moreira C, Boguszewski CL, Cunha Borges JL, et al. Bone mineral density and vertebral fractures and their relationship with pulmonary dysfunction in patients with chronic obstructive pulmonary disease. Osteoporos Int 2018; 29: 2537-43. https://doi.org/10.1007/s00198-018-4643-1
  15. Sasaki N, Fujiwara S, Yamashita H, Ozono R, Teramen K, Kihara Y. Impact of sleep on osteoporosis: sleep quality is associated with bone stiffness index. Sleep Med 2016; 25: 73-7. https://doi.org/10.1016/j.sleep.2016.06.029
  16. Davis SR, Jane F. Drugs for the treatment of menopausal symptoms. Expert Opin Pharmacother 2010; 11: 1329-41. https://doi.org/10.1517/14656561003742962
  17. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102: 274-82. https://doi.org/10.1172/JCI2799
  18. Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep 2012 http://dx.doi.org/10.1007/s11914-012-0104-5
  19. Dowd JB, Goldman N, Weinstein M. Sleep duration, sleep quality, and biomarkers of inflammation in a Taiwanese population. Ann Epidemiol 2011; 21: 799-806. https://doi.org/10.1016/j.annepidem.2011.07.004
  20. Ferrie JE, Kivimaki M, Akbaraly TN, Singh-Manoux A, Miller MA, Gimeno D, et al. Associations between change in sleep duration and inflammation: findings on C-reactive protein and interleukin 6 in the Whitehall II Study. Am J Epidemiol 2013; 178: 956-61. https://doi.org/10.1093/aje/kwt072
  21. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep 2009; 7: 134-9. https://doi.org/10.1007/s11914-009-0023-2
  22. Tong Q, Wu W, Wu Q, Yu Y, Lv X, Wang B, et al. Sleep onset latency is related with reduced bone mineral density in elderly people with insomnia: a retrospective study. Clin Interv Aging 2018; 13: 1525-30. https://doi.org/10.2147/CIA.S161922
  23. Pervanidou P, Chrousos GP. Stress and obesity/metabolic syndrome in childhood and adolescence. Int J Pediatr Obes 2011; 6 Suppl 1: 21-8.
  24. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A 2006; 103: 16876-81. https://doi.org/10.1073/pnas.0604234103
  25. Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 2015; 20: 32-47. https://doi.org/10.1038/mp.2014.163
  26. Eskandari F, Martinez PE, Torvik S, Phillips TM, Sternberg EM, Mistry S, et al. Low bone mass in premenopausal women with depression. Arch Intern Med 2007; 167: 2329-36. https://doi.org/10.1001/archinte.167.21.2329
  27. Weston CS. Posttraumatic stress disorder: a theoretical model of the hyperarousal subtype. Front Psychiatry 2014; 5: 37.
  28. Kuriyama N, Inaba M, Ozaki E, Yoneda Y, Matsui D, Hashiguchi K, et al. Association between loss of bone mass due to short sleep and leptin-sympathetic nervous system activity. Arch Gerontol Geriatr 2017; 70: 201-8. https://doi.org/10.1016/j.archger.2017.02.005
  29. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007; 8: 171-81.
  30. Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 2011; 32: 451-62. https://doi.org/10.1016/j.tips.2011.03.007
  31. Wei W, Motoike T, Krzeszinski JY, Jin Z, Xie XJ, Dechow PC, et al. Orexin regulates bone remodeling via a dominant positive central action and a subordinate negative peripheral action. Cell Metab 2014; 19: 927-40. https://doi.org/10.1016/j.cmet.2014.03.016
  32. Allard JS, Tizabi Y, Shaffery JP, Trouth CO, Manaye K. Stereological analysis of the hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides 2004; 38: 311-5. https://doi.org/10.1016/j.npep.2004.06.004
  33. Brundin L, Bjorkqvist M, Petersen A, Traskman-Bendz L. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol 2007; 17: 573-9. https://doi.org/10.1016/j.euroneuro.2007.01.005
  34. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98: 437-51. https://doi.org/10.1016/S0092-8674(00)81973-X
  35. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001; 30: 345-54. https://doi.org/10.1016/S0896-6273(01)00293-8
  36. Sellayah D, Bharaj P, Sikder D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 2011; 14: 478-90. https://doi.org/10.1016/j.cmet.2011.08.010
  37. Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 2007; 13: 150-5. https://doi.org/10.1038/nm1544
  38. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab 2009; 9: 64-76. https://doi.org/10.1016/j.cmet.2008.10.010
  39. Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci 2012; 1264: 72-86. https://doi.org/10.1111/j.1749-6632.2012.06585.x
  40. Lago F, Gonzalez-Juanatey JR, Casanueva FF, Gomez-Reino J, Dieguez C, Gualillo O. Ghrelin, the same peptide for different functions: player or bystander? Vitam Horm 2005; 71: 405-32.
  41. Nouh O, Abd Elfattah MM, Hassouna AA. Association between ghrelin levels and BMD: a cross sectional trial. Gynecol Endocrinol 2012; 28: 570-2. https://doi.org/10.3109/09513590.2011.593663
  42. Kim SW, Her SJ, Park SJ, Kim D, Park KS, Lee HK, et al. Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone 2005; 37: 359-69. https://doi.org/10.1016/j.bone.2005.04.020
  43. Delhanty PJ, van der Eerden BC, van der Velde M, Gauna C, Pols HA, Jahr H, et al. Ghrelin and unacylated ghrelin stimulate human osteoblast growth via mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) pathways in the absence of GHS-R1a. J Endocrinol 2006; 188: 37-47. https://doi.org/10.1677/joe.1.06404
  44. Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, et al. Ghrelin directly regulates bone formation. J Bone Miner Res 2005; 20: 790-8.
  45. Arble DM, Vitaterna MH, Turek FW. Rhythmic leptin is required for weight gain from circadian desynchronized feeding in the mouse. PLoS One 2011; 6: e25079. https://doi.org/10.1371/journal.pone.0025079
  46. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 2009; 106: 4453-8. https://doi.org/10.1073/pnas.0808180106
  47. Baranowska B, Baranowska-Bik A, Bik W, Martynska L. The role of leptin and orexins in the dysfunction of hypothalamo-pituitary-gonadal regulation and in the mechanism of hyperactivity in patients with anorexia nervosa. Neuro Endocrinol Lett 2008; 29: 37-40.
  48. Paredes SD, Barriga C, Reiter RJ, Rodriguez AB. Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: Streptopelia risoria as a model. Int J Tryptophan Res 2009; 2: 23-36.
  49. Frase L, Nissen C, Riemann D, Spiegelhalder K. Making sleep easier: pharmacological interventions for insomnia. Expert Opin Pharmacother 2018; 19: 1465-73. https://doi.org/10.1080/14656566.2018.1511705
  50. Lee S, Le NH, Kang D. Melatonin alleviates oxidative stress-inhibited osteogenesis of human bone marrowderived mesenchymal stem cells through AMPK activation. Int J Med Sci 2018; 15: 1083-91. https://doi.org/10.7150/ijms.26314
  51. Xu L, Zhang L, Wang Z, Li C, Li S, Li L, et al. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int 2018; 103: 400-10. https://doi.org/10.1007/s00223-018-0428-y
  52. Um MJ, Cho EA, Jung H. Combination therapy of raloxifene and alendronate for treatment of osteoporosis in elderly women. J Menopausal Med 2017; 23: 56-62. https://doi.org/10.6118/jmm.2017.23.1.56
  53. Jung M. Zolpidem overdose: A dilemma in mental health. Health Care Manag (Frederick) 2018; 37: 86-9.
  54. Kwon CY, Lee B, Chung SY, Kim JW, Kim SH. Oriental herbal medicine for insomnia in the elderly with hypertension: A systematic review protocol. Medicine (Baltimore) 2018; 97: e12200. https://doi.org/10.1097/MD.0000000000012200
  55. Kim M, Lim HS, Lee HH, Kim TH. Role identification of Passiflora incarnata linnaeus: A mini review. J Menopausal Med 2017; 23: 156-9. https://doi.org/10.6118/jmm.2017.23.3.156
  56. Singh A, Zhao K. Treatment of insomnia with traditional Chinese herbal medicine. Int Rev Neurobiol 2017; 135: 97-115.
  57. Ahmad N, Chillara R, Kushwaha P, Khedgikar V, Karvande A, Choudhary D, et al. Evaluation of anti-osteoporotic activity of butanolic fraction from Passiflora foetida in ovariectomy-induced bone loss in mice. Biomed Pharmacother 2017; 88: 804-13. https://doi.org/10.1016/j.biopha.2017.01.100
  58. Ngan A, Conduit R. A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytother Res 2011; 25: 1153-9. https://doi.org/10.1002/ptr.3400
  59. Jawna-Zboinska K, Blecharz-Klin K, Joniec-Maciejak I, Wawer A, Pyrzanowska J, Piechal A, et al. Passiflora incarnata L. improves spatial memory, reduces stress, and affects neurotransmission in rats. Phytother Res 2016; 30: 781-9. https://doi.org/10.1002/ptr.5578
  60. Aoyagi N, Kimura R, Murata T. Studies on passiflora incarnata dry extract. I. Isolation of maltol and pharmacological action of maltol and ethyl maltol. Chem Pharm Bull (Tokyo) 1974; 22: 1008-13. https://doi.org/10.1248/cpb.22.1008

Cited by

  1. Melatonin in neuroskeletal biology vol.61, pp.None, 2018, https://doi.org/10.1016/j.coph.2021.08.016