DOI QR코드

DOI QR Code

Detection of Innate and Artificial Mitochondrial DNA Heteroplasmy by Massively Parallel Sequencing: Considerations for Analysis

  • Kim, Moon-Young (Department of Forensic Medicine, Seoul National University College of Medicine) ;
  • Cho, Sohee (Institute of Forensic Science, Seoul National University College of Medicine) ;
  • Lee, Ji Hyun (Department of Forensic Medicine, Seoul National University College of Medicine) ;
  • Seo, Hee Jin (Department of Forensic Medicine, Seoul National University College of Medicine) ;
  • Lee, Soong Deok (Department of Forensic Medicine, Seoul National University College of Medicine)
  • Received : 2018.07.11
  • Accepted : 2018.10.02
  • Published : 2018.12.24

Abstract

Background: Mitochondrial heteroplasmy, the co-existence of different mitochondrial polymorphisms within an individual, has various forensic and clinical implications. But there is still no guideline on the application of massively parallel sequencing (MPS) in heteroplasmy detection. We present here some critical issues that should be considered in heteroplasmy studies using MPS. Methods: Among five samples with known innate heteroplasmies, two pairs of mixture were generated for artificial heteroplasmies with target minor allele frequencies (MAFs) ranging from 50% to 1%. Each sample was amplified by two-amplicon method and sequenced by Ion Torrent system. The outcomes of two different analysis tools, Torrent Suite Variant Caller (TVC) and mtDNA-Server (mDS), were compared. Results: All the innate heteroplasmies were detected correctly by both analysis tools. Average MAFs of artificial heteroplasmies correlated well to the target values. The detection rates were almost 90% for high-level heteroplasmies, but decreased for low-level heteroplasmies. TVC generally showed lower detection rates than mDS, which seems to be due to their own computation algorithms which drop out some reference-dominant heteroplasmies. Meanwhile, mDS reported several unintended low-level heteroplasmies which were suggested as nuclear mitochondrial DNA sequences. The average coverage depth of each sample placed on the same chip showed considerable variation. The increase of coverage depth had no effect on the detection rates. Conclusion: In addition to the general accuracy of the MPS application on detecting heteroplasmy, our study indicates that the understanding of the nature of mitochondrial DNA and analysis algorithm would be crucial for appropriate interpretation of MPS results.

Keywords

Acknowledgement

Supported by : Seoul National University Hospital (SNUH), Ministry of Science, ICT & Future Planning

References

  1. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 2010;1797(2):113-28.
  2. Bianchi DW. Prenatal diagnostics: fetal genes in mother's blood. Nature 2012;487(7407):304-5. https://doi.org/10.1038/487304a
  3. Perales-Clemente E, Cook AN, Evans JM, Roellinger S, Secreto F, Emmanuele V, et al. Natural underlying mtDNA heteroplasmy as a potential source of intra-person hiPSC variability. EMBO J 2016;35(18):1979-90. https://doi.org/10.15252/embj.201694892
  4. Zhang J, Liu H, Luo S, Lu Z, Chavez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 2017;34(4):361-8. https://doi.org/10.1016/j.rbmo.2017.01.013
  5. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 2016;534(7607):383-6. https://doi.org/10.1038/nature18303
  6. Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, et al. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 2014;13:134-42. https://doi.org/10.1016/j.fsigen.2014.07.010
  7. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 1996;12(4):417-20. https://doi.org/10.1038/ng0496-417
  8. McFarland R, Clark KM, Morris AA, Taylor RW, Macphail S, Lightowlers RN, et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002;30(2):145-6. https://doi.org/10.1038/ng819
  9. Just RS, Irwin JA, Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 2015;18:131-9. https://doi.org/10.1016/j.fsigen.2015.05.003
  10. Buermans HP, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim Biophys Acta 2014;1842(10):1932-41. https://doi.org/10.1016/j.bbadis.2014.06.015
  11. Weissensteiner H, Forer L, Fuchsberger C, Schopf B, Kloss-Brandstatter A, Specht G, et al. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res 2016;44(W1):W64-9. https://doi.org/10.1093/nar/gkw247
  12. Skonieczna K, Malyarchuk B, Jawien A, Marszalek A, Banaszkiewicz Z, Jarmocik P, et al. Heteroplasmic substitutions in the entire mitochondrial genomes of human colon cells detected by ultra-deep 454 sequencing. Forensic Sci Int Genet 2015;15:16-20. https://doi.org/10.1016/j.fsigen.2014.10.021
  13. Seneca S, Vancampenhout K, Van Coster R, Smet J, Lissens W, Vanlander A, et al. Analysis of the whole mitochondrial genome: translation of the Ion Torrent Personal Genome Machine system to the diagnostic bench? Eur J Hum Genet 2015;23(1):41-8. https://doi.org/10.1038/ejhg.2014.49
  14. Kim H, Erlich HA, Calloway CD. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat Med J 2015;56(3):208-17. https://doi.org/10.3325/cmj.2015.56.208
  15. Guo Y, Li CI, Sheng Q, Winther JF, Cai Q, Boice JD, et al. Very low-level heteroplasmy mtDNA variations are inherited in humans. J Genet Genomics 2013;40(12):607-15. https://doi.org/10.1016/j.jgg.2013.10.003
  16. Cui H, Li F, Chen D, Wang G, Truong CK, Enns GM, et al. Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet Med 2013;15(5):388-94. https://doi.org/10.1038/gim.2012.144
  17. Tang S, Huang T. Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotechniques 2010;48(4):287-96. https://doi.org/10.2144/000113389
  18. Wei W, Keogh MJ, Wilson I, Coxhead J, Ryan S, Rollinson S, et al. Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol Commun 2017;5(1):13. https://doi.org/10.1186/s40478-016-0404-6
  19. Zhou Y, Guo F, Yu J, Liu F, Zhao J, Shen H, et al. Strategies for complete mitochondrial genome sequencing on Ion Torrent $PGM^{TM}$ platform in forensic sciences. Forensic Sci Int Genet 2016;22:11-21. https://doi.org/10.1016/j.fsigen.2016.01.004
  20. Triant DA, DeWoody JA. The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography. J Mammal 2007;88(4):908-20. https://doi.org/10.1644/06-MAMM-A-204R1.1
  21. Parr RL, Maki J, Reguly B, Dakubo GD, Aguirre A, Wittock R, et al. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation. BMC Genomics 2006;7(1):185. https://doi.org/10.1186/1471-2164-7-185
  22. Fendt L, Zimmermann B, Daniaux M, Parson W. Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences. BMC Genomics 2009;10(1):139. https://doi.org/10.1186/1471-2164-10-139
  23. Zaragoza MV, Fass J, Diegoli M, Lin D, Arbustini E. Mitochondrial DNA variant discovery and evaluation in human cardiomyopathies through next-generation sequencing. PLoS One 2010;5(8):e12295. https://doi.org/10.1371/journal.pone.0012295
  24. Calabrese C, Simone D, Diroma MA, Santorsola M, Gutta C, Gasparre G, et al. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 2014;30(21):3115-7. https://doi.org/10.1093/bioinformatics/btu483
  25. Guo Y, Li J, Li CI, Shyr Y, Samuels DC. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis. Bioinformatics 2013;29(9):1210-1. https://doi.org/10.1093/bioinformatics/btt118
  26. Clarke AC, Prost S, Stanton JA, White WT, Kaplan ME, Matisoo-Smith EA, et al. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes. BMC Genomics 2014;15(1):68. https://doi.org/10.1186/1471-2164-15-68
  27. Vellarikkal SK, Dhiman H, Joshi K, Hasija Y, Sivasubbu S, Scaria V. mit-o-matic: a comprehensive computational pipeline for clinical evaluation of mitochondrial variations from next-generation sequencing datasets. Hum Mutat 2015;36(4):419-24. https://doi.org/10.1002/humu.22767
  28. Holland MM, Pack ED, McElhoe JA. Evaluation of $GeneMarker^{(R)}$ HTS for improved alignment of mtDNA MPS data, haplotype determination, and heteroplasmy assessment. Forensic Sci Int Genet 2017;28:90-8. https://doi.org/10.1016/j.fsigen.2017.01.016
  29. Mikkelsen M, Frank-Hansen R, Hansen AJ, Morling N. Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics. Forensic Sci Int Genet 2014;12:30-7. https://doi.org/10.1016/j.fsigen.2014.03.014
  30. Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 2010;87(2):237-49. https://doi.org/10.1016/j.ajhg.2010.07.014
  31. Park S, Cho S, Seo HJ, Lee JH, Kim MY, Lee SD. Entire mitochondrial DNA sequencing on massively parallel sequencing for the Korean population. J Korean Med Sci 2017;32(4):587-92. https://doi.org/10.3346/jkms.2017.32.4.587
  32. Kiesler KM, Vallone PM. Characterization of NIST standard reference materials by next generation sequencing. Forensic Sci Int Genet Suppl Ser 2013;4(1):e97-8. https://doi.org/10.1016/j.fsigss.2013.10.050
  33. Kavlick MF, Lawrence HS, Merritt RT, Fisher C, Isenberg A, Robertson JM, et al. Quantification of human mitochondrial DNA using synthesized DNA standards. J Forensic Sci 2011;56(6):1457-63. https://doi.org/10.1111/j.1556-4029.2011.01871.x
  34. Dayama G, Emery SB, Kidd JM, Mills RE. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res 2014;42(20):12640-9. https://doi.org/10.1093/nar/gku1038
  35. Marquis J, Lefebvre G, Kourmpetis YA, Kassam M, Ronga F, De Marchi U, et al. MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. BMC Genomics 2017;18(1):326. https://doi.org/10.1186/s12864-017-3695-5
  36. MToolBox output files. https://github.com/mitoNGS/MToolBox/wiki/Output-files. Updated 2017. Accessed May 28, 2017.
  37. Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, Revin VV, et al. Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. BioMed Res Int 2014;2014:292017.

Cited by

  1. Analyzing Low-Level mtDNA Heteroplasmy—Pitfalls and Challenges from Bench to Benchmarking vol.22, pp.2, 2021, https://doi.org/10.3390/ijms22020935