DOI QR코드

DOI QR Code

TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade

  • Han, Zhezhu (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Kang, Dongxu (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Joo, Yeonsoo (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Lee, Jihyun (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Oh, Geun-Hyeok (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Choi, Soojin (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Ko, Suwan (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Je, Suyeon (Institute for Cancer Research, Yonsei University College of Medicine) ;
  • Choi, Hye Jin (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Song, Jae J. (Institute for Cancer Research, Yonsei University College of Medicine)
  • Received : 2018.01.07
  • Accepted : 2018.09.11
  • Published : 2018.12.30

Abstract

Transforming growth factor $(TGF)-{\beta}$ signaling is increasingly recognized as a key driver in cancer. In progressive cancer tissues, $TGF-{\beta}$ promotes tumor formation, and its increased expression often correlates with cancer malignancy. In this study, we utilized adenoviruses expressing short hairpin RNAs against $TGF-{\beta}1$ and $TGF-{\beta}2$ to investigate the role of $TGF-{\beta}$ downregulation in cancer cell death. We found that the downregulation of $TGF-{\beta}$ increased the phosphorylation of several SAPKs, such as p38 and JNK. Moreover, reactive oxygen species (ROS) production was also increased by $TGF-{\beta}$ downregulation, which triggered Akt inactivation and NOX4 increase-derived ROS in a cancer cell-type-specific manner. We also revealed the possibility of substantial gene fluctuation in response to $TGF-{\beta}$ downregulation related to SAPKs. The expression levels of Trx and GSTM1, which encode inhibitory proteins that bind to ASK1, were reduced, likely a result of the altered translocation of Smad complex proteins rather than from ROS production. Instead, both ROS and ROS-mediated ER stress were responsible for the decrease in interactions between ASK1 and Trx or GSTM1. Through these pathways, ASK1 was activated and induced cytotoxic tumor cell death via p38/JNK activation and (or) induction of ER stress.

Keywords

Acknowledgement

Supported by : Korea Drug Development Fund, National Research Foundation of Korea (NRF)

References

  1. Papageorgis, P. TGFbeta signaling in tumor initiation, epithelial-tomesenchymal transition, and metastasis. J. Oncol. 2015, 587193 (2015).
  2. Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791 (1998). https://doi.org/10.1146/annurev.biochem.67.1.753
  3. Lebrun, J. J. The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 381428 (2012).
  4. Wakefield, L. M. & Hill, C. S. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat. Rev. Cancer 13, 328-341 (2013). https://doi.org/10.1038/nrc3500
  5. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat. Rev. Cancer 3, 807-821 (2003). https://doi.org/10.1038/nrc1208
  6. Xu, J., Lamouille, S. & Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156-172 (2009). https://doi.org/10.1038/cr.2009.5
  7. Dumont, N. & Arteaga, C. L. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3, 531-536 (2003). https://doi.org/10.1016/S1535-6108(03)00135-1
  8. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117-129 (2001). https://doi.org/10.1038/ng1001-117
  9. Jakowlew, S. B. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 25, 435-457 (2006). https://doi.org/10.1007/s10555-006-9006-2
  10. Neuzillet, C. et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol. Ther. 147, 22-31 (2015). https://doi.org/10.1016/j.pharmthera.2014.11.001
  11. Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616-630 (2012). https://doi.org/10.1038/nrm3434
  12. Wakefield, L. M. & Roberts, A. B. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22-29 (2002). https://doi.org/10.1016/S0959-437X(01)00259-3
  13. Massague, J. TGFbeta in cancer. Cell 134, 215-230 (2008). https://doi.org/10.1016/j.cell.2008.07.001
  14. Huang, F. & Chen, Y. G. Regulation of TGF-beta receptor activity. Cell Biosci. 2, 9 (2012). https://doi.org/10.1186/2045-3701-2-9
  15. Inman, G. J. Switching TGFbeta from a tumor suppressor to a tumor promoter. Curr. Opin. Genet. Dev. 21, 93-99 (2011). https://doi.org/10.1016/j.gde.2010.12.004
  16. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577-584 (2003). https://doi.org/10.1038/nature02006
  17. Ross, S. & Hill, C. S. How the Smads regulate transcription. Int. J. Biochem. Cell Biol. 40, 383-408 (2008). https://doi.org/10.1016/j.biocel.2007.09.006
  18. Massague, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783-2810 (2005). https://doi.org/10.1101/gad.1350705
  19. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247-269 (2005). https://doi.org/10.1146/annurev.cellbio.21.020604.150721
  20. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803-36810 (2000). https://doi.org/10.1074/jbc.M005912200
  21. Shin, I., Bakin, A. V., Rodeck, U., Brunet, A. & Arteaga, C. L. Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol. Biol. Cell 12, 3328-3339 (2001). https://doi.org/10.1091/mbc.12.11.3328
  22. Wang, S. E. The functional crosstalk between HER2 tyrosine kinase and TGFbeta signaling in breast cancer malignancy. J. Signal Transduct. 2011, 804236 (2011).
  23. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270, 2008-2011 (1995). https://doi.org/10.1126/science.270.5244.2008
  24. Kim, S. I., Kwak, J. H., Wang, L. & Choi, M. E. Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J. Biol. Chem. 283, 10753-10763 (2008). https://doi.org/10.1074/jbc.M801263200
  25. Zhang, Y. E. Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128-139 (2009). https://doi.org/10.1038/cr.2008.328
  26. Mu, Y., Gudey, S. K. & Landstrom, M. Non-Smad signaling pathways. Cell Tissue Res. 347, 11-20 (2012). https://doi.org/10.1007/s00441-011-1201-y
  27. Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90-94 (1997). https://doi.org/10.1126/science.275.5296.90
  28. Chen, Z. et al. ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18, 173-180 (1999). https://doi.org/10.1038/sj.onc.1202276
  29. Roulston, A., Reinhard, C., Amiri, P. & Williams, L. T. Early activation of c-Jun Nterminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J. Biol. Chem. 273, 10232-10239 (1998). https://doi.org/10.1074/jbc.273.17.10232
  30. Kim, J. et al. HSP27 modulates survival signaling networks in cells treated with curcumin and TRAIL. Cell. Signal. 24, 1444-1452 (2012). https://doi.org/10.1016/j.cellsig.2012.03.009
  31. Hsieh, C. C. & Papaconstantinou, J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 20, 259-268 (2006). https://doi.org/10.1096/fj.05-4376com
  32. Matsukawa, J., Matsuzawa, A., Takeda, K. & Ichijo, H. The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem. 136, 261-265 (2004). https://doi.org/10.1093/jb/mvh134
  33. Tobiume, K. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222-228 (2001). https://doi.org/10.1093/embo-reports/kve046
  34. Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029-3085 (2016). https://doi.org/10.1021/acs.chemrev.5b00407
  35. Muller, F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J. Am. Aging Assoc. 23, 227-253 (2000).
  36. Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496 (2010). https://doi.org/10.3109/10715761003667554
  37. Burdon, R. H., Gill, V. & Rice-Evans, C. Oxidative stress and tumour cell proliferation. Free Radic. Res. Commun. 11, 65-76 (1990). https://doi.org/10.3109/10715769009109669
  38. Qu, K. et al. Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Acta Pharmacol. Sin. 34, 1217-1228 (2013). https://doi.org/10.1038/aps.2013.58
  39. Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277-2293 (2007). https://doi.org/10.1089/ars.2007.1782
  40. Zeeshan, H. M., Lee, G. H., Kim, H. R. & Chae, H. J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327 (2016). https://doi.org/10.3390/ijms17030327
  41. Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 91, 1219-1243 (2011). https://doi.org/10.1152/physrev.00001.2011
  42. Powis, G., Mustacich, D. & Coon, A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic. Biol. Med. 29, 312-322 (2000). https://doi.org/10.1016/S0891-5849(00)00313-0
  43. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606 (1998). https://doi.org/10.1093/emboj/17.9.2596
  44. Fujino, G., Noguchi, T., Takeda, K. & Ichijo, H. Thioredoxin and protein kinases in redox signaling. Semin. Cancer Biol. 16, 427-435 (2006). https://doi.org/10.1016/j.semcancer.2006.09.003
  45. Cho, S. G. et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol. Chem. 276, 12749-12755 (2001). https://doi.org/10.1074/jbc.M005561200
  46. Oh, S. et al. Transforming growth factor-beta gene silencing using adenovirus expressing TGF-beta1 or TGF-beta2 shRNA. Cancer Gene. Ther. 20, 94-100 (2013). https://doi.org/10.1038/cgt.2012.90
  47. Pardali, K. & Moustakas, A. Actions of TGF-beta as tumor suppressor and prometastatic factor in human cancer. Biochim. Biophys. Acta 1775, 21-62 (2007).
  48. Son, Y., Kim, S., Chung, H. T. & Pae, H. O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48 (2013).
  49. McCubrey, J. A., Lahair, M. M. & Franklin, R. A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 8, 1775-1789 (2006). https://doi.org/10.1089/ars.2006.8.1775
  50. Son, Y. et al. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639 (2011).
  51. Zafarullah, M., Li, W. Q., Sylvester, J. & Ahmad, M. Molecular mechanisms of Nacetylcysteine actions. Cell. Mol. Life Sci. 60, 6-20 (2003). https://doi.org/10.1007/s000180300001
  52. Santos, C. X., Tanaka, L. Y., Wosniak, J. & Laurindo, F. R. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox Signal. 11, 2409-2427 (2009). https://doi.org/10.1089/ars.2009.2625
  53. Galan, M. et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim. Biophys. Acta 1843, 1063-1075 (2014). https://doi.org/10.1016/j.bbamcr.2014.02.009
  54. Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471 (1997). https://doi.org/10.1038/37284
  55. Tuzun, S., Yucel, A. F., Pergel, A., Kemik, A. S. & Kemik, O. Lipid peroxidation and transforming growth factor-beta1 levels in gastric cancer at pathologic stages. Balk. Med. J. 29, 273-276 (2012).
  56. Dropmann, A. et al. TGF-beta1 and TGF-beta2 abundance in liver diseases of mice and men. Oncotarget 7, 19499-19518 (2016).
  57. Friess, H. et al. Enhanced expression of the type II transforming growth factor beta receptor in human pancreatic cancer cells without alteration of type III receptor expression. Cancer Res. 53, 2704-2707 (1993).
  58. Drabsch, Y. & ten Dijke, P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastas-. Rev. 31, 553-568 (2012). https://doi.org/10.1007/s10555-012-9375-7
  59. Begas, P., Liedgens, L., Moseler, A., Meyer, A. J. & Deponte, M. Glutaredoxin catalysis requires two distinct glutathione interaction sites. Nat. Commun. 8, 14835 (2017). https://doi.org/10.1038/ncomms14835
  60. Song, J. J. et al. Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J. Biol. Chem. 277, 46566-46575 (2002). https://doi.org/10.1074/jbc.M206826200
  61. Rhee, S. G., Woo, H. A., Kil, I. S. & Bae, S. H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410 (2012). https://doi.org/10.1074/jbc.R111.283432
  62. Barranco-Medina, S., Lazaro, J. J. & Dietz, K. J. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 583, 1809-1816 (2009). https://doi.org/10.1016/j.febslet.2009.05.029
  63. Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr. Opin. Cell Biol. 10, 205-219 (1998). https://doi.org/10.1016/S0955-0674(98)80143-9
  64. Turjanski, A. G., Vaque, J. P. & Gutkind, J. S. MAP kinases and the control of nuclear events. Oncogene 26, 3240-3253 (2007). https://doi.org/10.1038/sj.onc.1210415
  65. Wagner, E. F. & Nebreda, A. R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537-549 (2009). https://doi.org/10.1038/nrc2694
  66. Guo, Y. L., Baysal, K., Kang, B., Yang, L. J. & Williamson, J. R. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J. Biol. Chem. 273, 4027-4034 (1998). https://doi.org/10.1074/jbc.273.7.4027
  67. Hanafusa, H. et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J. Biol. Chem. 274, 27161-27167 (1999). https://doi.org/10.1074/jbc.274.38.27161
  68. Hartsough, M. T. & Mulder, K. M. Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J. Biol. Chem. 270, 7117-7124 (1995). https://doi.org/10.1074/jbc.270.13.7117
  69. Engel,M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J. Biol. Chem. 274, 37413-37420 (1999). https://doi.org/10.1074/jbc.274.52.37413
  70. Yu, L., Hebert, M. C. & Zhang, Y. E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21, 3749-3759 (2002). https://doi.org/10.1093/emboj/cdf366
  71. Korpal, M. & Kang, Y. Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur. J. Cancer 46, 1232-1240 (2010). https://doi.org/10.1016/j.ejca.2010.02.040
  72. Kang, D., Park, W., Lee, S., Kim, J. H. & Song, J. J. Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell. Signal. 25, 1288-1300 (2013). https://doi.org/10.1016/j.cellsig.2013.01.014
  73. Kim, J., Kang, D., Sun, B. K., Kim, J. H. & Song, J. J. TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell. Signal. 25, 372-379 (2013). https://doi.org/10.1016/j.cellsig.2012.10.010
  74. Yoo, Y. A., Kim, Y. H., Kim, J. S. & Seo, J. H. The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer. Biochim. Biophys. Acta 1783, 438-447 (2008). https://doi.org/10.1016/j.bbamcr.2007.12.001
  75. Hernanda, P. Y. et al. SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma. Oncogene 34, 5055-5068 (2015). https://doi.org/10.1038/onc.2014.425
  76. Zhao, Y. et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol. Cancer 16, 79 (2017). https://doi.org/10.1186/s12943-017-0648-1
  77. Zhang, J. et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016, 4350965 (2016).
  78. Syed, V. TGF-beta signaling in cancer. J. Cell. Biochem. 117, 1279-1287 (2016). https://doi.org/10.1002/jcb.25496

Cited by

  1. Recurrent or Refractory High-Grade Gliomas Treated by Convection-Enhanced Delivery of a TGFβ 2 -Targeting RNA Therapeutic: A Post-Hoc Analysis with Long-Term Follow-Up vol.11, pp.12, 2019, https://doi.org/10.3390/cancers11121892
  2. Unraveling the Molecular Nexus between GPCRs, ERS, and EMT vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6655417
  3. Development of a cytokine gene expression assay for the relative quantification of the African elephant (Loxodonta africana) cell-mediated immune responses vol.141, pp.None, 2018, https://doi.org/10.1016/j.cyto.2021.155453
  4. Attenuation of diethyl nitrosamine-induced hepatocellular carcinoma by taxifolin and/or alogliptin: The interplay between toll-like receptor 4, transforming growth factor beta-1, and apoptosis vol.40, pp.10, 2018, https://doi.org/10.1177/09603271211008496
  5. TGFβ Signaling in the Pancreatic Tumor Microenvironment vol.13, pp.20, 2018, https://doi.org/10.3390/cancers13205086
  6. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models vol.179, pp.None, 2021, https://doi.org/10.1016/j.addr.2021.114003