Acknowledgement
Supported by : Korea Drug Development Fund, National Research Foundation of Korea (NRF)
References
- Papageorgis, P. TGFbeta signaling in tumor initiation, epithelial-tomesenchymal transition, and metastasis. J. Oncol. 2015, 587193 (2015).
- Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791 (1998). https://doi.org/10.1146/annurev.biochem.67.1.753
- Lebrun, J. J. The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 381428 (2012).
- Wakefield, L. M. & Hill, C. S. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat. Rev. Cancer 13, 328-341 (2013). https://doi.org/10.1038/nrc3500
- Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat. Rev. Cancer 3, 807-821 (2003). https://doi.org/10.1038/nrc1208
- Xu, J., Lamouille, S. & Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156-172 (2009). https://doi.org/10.1038/cr.2009.5
- Dumont, N. & Arteaga, C. L. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3, 531-536 (2003). https://doi.org/10.1016/S1535-6108(03)00135-1
- Derynck, R., Akhurst, R. J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117-129 (2001). https://doi.org/10.1038/ng1001-117
- Jakowlew, S. B. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 25, 435-457 (2006). https://doi.org/10.1007/s10555-006-9006-2
- Neuzillet, C. et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol. Ther. 147, 22-31 (2015). https://doi.org/10.1016/j.pharmthera.2014.11.001
- Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616-630 (2012). https://doi.org/10.1038/nrm3434
- Wakefield, L. M. & Roberts, A. B. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22-29 (2002). https://doi.org/10.1016/S0959-437X(01)00259-3
- Massague, J. TGFbeta in cancer. Cell 134, 215-230 (2008). https://doi.org/10.1016/j.cell.2008.07.001
- Huang, F. & Chen, Y. G. Regulation of TGF-beta receptor activity. Cell Biosci. 2, 9 (2012). https://doi.org/10.1186/2045-3701-2-9
- Inman, G. J. Switching TGFbeta from a tumor suppressor to a tumor promoter. Curr. Opin. Genet. Dev. 21, 93-99 (2011). https://doi.org/10.1016/j.gde.2010.12.004
- Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577-584 (2003). https://doi.org/10.1038/nature02006
- Ross, S. & Hill, C. S. How the Smads regulate transcription. Int. J. Biochem. Cell Biol. 40, 383-408 (2008). https://doi.org/10.1016/j.biocel.2007.09.006
- Massague, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783-2810 (2005). https://doi.org/10.1101/gad.1350705
- Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247-269 (2005). https://doi.org/10.1146/annurev.cellbio.21.020604.150721
- Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803-36810 (2000). https://doi.org/10.1074/jbc.M005912200
- Shin, I., Bakin, A. V., Rodeck, U., Brunet, A. & Arteaga, C. L. Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol. Biol. Cell 12, 3328-3339 (2001). https://doi.org/10.1091/mbc.12.11.3328
- Wang, S. E. The functional crosstalk between HER2 tyrosine kinase and TGFbeta signaling in breast cancer malignancy. J. Signal Transduct. 2011, 804236 (2011).
- Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270, 2008-2011 (1995). https://doi.org/10.1126/science.270.5244.2008
- Kim, S. I., Kwak, J. H., Wang, L. & Choi, M. E. Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J. Biol. Chem. 283, 10753-10763 (2008). https://doi.org/10.1074/jbc.M801263200
- Zhang, Y. E. Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128-139 (2009). https://doi.org/10.1038/cr.2008.328
- Mu, Y., Gudey, S. K. & Landstrom, M. Non-Smad signaling pathways. Cell Tissue Res. 347, 11-20 (2012). https://doi.org/10.1007/s00441-011-1201-y
- Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90-94 (1997). https://doi.org/10.1126/science.275.5296.90
- Chen, Z. et al. ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18, 173-180 (1999). https://doi.org/10.1038/sj.onc.1202276
- Roulston, A., Reinhard, C., Amiri, P. & Williams, L. T. Early activation of c-Jun Nterminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J. Biol. Chem. 273, 10232-10239 (1998). https://doi.org/10.1074/jbc.273.17.10232
- Kim, J. et al. HSP27 modulates survival signaling networks in cells treated with curcumin and TRAIL. Cell. Signal. 24, 1444-1452 (2012). https://doi.org/10.1016/j.cellsig.2012.03.009
- Hsieh, C. C. & Papaconstantinou, J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 20, 259-268 (2006). https://doi.org/10.1096/fj.05-4376com
- Matsukawa, J., Matsuzawa, A., Takeda, K. & Ichijo, H. The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem. 136, 261-265 (2004). https://doi.org/10.1093/jb/mvh134
- Tobiume, K. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222-228 (2001). https://doi.org/10.1093/embo-reports/kve046
- Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029-3085 (2016). https://doi.org/10.1021/acs.chemrev.5b00407
- Muller, F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J. Am. Aging Assoc. 23, 227-253 (2000).
- Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496 (2010). https://doi.org/10.3109/10715761003667554
- Burdon, R. H., Gill, V. & Rice-Evans, C. Oxidative stress and tumour cell proliferation. Free Radic. Res. Commun. 11, 65-76 (1990). https://doi.org/10.3109/10715769009109669
- Qu, K. et al. Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Acta Pharmacol. Sin. 34, 1217-1228 (2013). https://doi.org/10.1038/aps.2013.58
- Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277-2293 (2007). https://doi.org/10.1089/ars.2007.1782
- Zeeshan, H. M., Lee, G. H., Kim, H. R. & Chae, H. J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327 (2016). https://doi.org/10.3390/ijms17030327
- Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 91, 1219-1243 (2011). https://doi.org/10.1152/physrev.00001.2011
- Powis, G., Mustacich, D. & Coon, A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic. Biol. Med. 29, 312-322 (2000). https://doi.org/10.1016/S0891-5849(00)00313-0
- Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606 (1998). https://doi.org/10.1093/emboj/17.9.2596
- Fujino, G., Noguchi, T., Takeda, K. & Ichijo, H. Thioredoxin and protein kinases in redox signaling. Semin. Cancer Biol. 16, 427-435 (2006). https://doi.org/10.1016/j.semcancer.2006.09.003
- Cho, S. G. et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol. Chem. 276, 12749-12755 (2001). https://doi.org/10.1074/jbc.M005561200
- Oh, S. et al. Transforming growth factor-beta gene silencing using adenovirus expressing TGF-beta1 or TGF-beta2 shRNA. Cancer Gene. Ther. 20, 94-100 (2013). https://doi.org/10.1038/cgt.2012.90
- Pardali, K. & Moustakas, A. Actions of TGF-beta as tumor suppressor and prometastatic factor in human cancer. Biochim. Biophys. Acta 1775, 21-62 (2007).
- Son, Y., Kim, S., Chung, H. T. & Pae, H. O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48 (2013).
- McCubrey, J. A., Lahair, M. M. & Franklin, R. A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 8, 1775-1789 (2006). https://doi.org/10.1089/ars.2006.8.1775
- Son, Y. et al. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639 (2011).
- Zafarullah, M., Li, W. Q., Sylvester, J. & Ahmad, M. Molecular mechanisms of Nacetylcysteine actions. Cell. Mol. Life Sci. 60, 6-20 (2003). https://doi.org/10.1007/s000180300001
- Santos, C. X., Tanaka, L. Y., Wosniak, J. & Laurindo, F. R. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox Signal. 11, 2409-2427 (2009). https://doi.org/10.1089/ars.2009.2625
- Galan, M. et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim. Biophys. Acta 1843, 1063-1075 (2014). https://doi.org/10.1016/j.bbamcr.2014.02.009
- Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471 (1997). https://doi.org/10.1038/37284
- Tuzun, S., Yucel, A. F., Pergel, A., Kemik, A. S. & Kemik, O. Lipid peroxidation and transforming growth factor-beta1 levels in gastric cancer at pathologic stages. Balk. Med. J. 29, 273-276 (2012).
- Dropmann, A. et al. TGF-beta1 and TGF-beta2 abundance in liver diseases of mice and men. Oncotarget 7, 19499-19518 (2016).
- Friess, H. et al. Enhanced expression of the type II transforming growth factor beta receptor in human pancreatic cancer cells without alteration of type III receptor expression. Cancer Res. 53, 2704-2707 (1993).
- Drabsch, Y. & ten Dijke, P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastas-. Rev. 31, 553-568 (2012). https://doi.org/10.1007/s10555-012-9375-7
- Begas, P., Liedgens, L., Moseler, A., Meyer, A. J. & Deponte, M. Glutaredoxin catalysis requires two distinct glutathione interaction sites. Nat. Commun. 8, 14835 (2017). https://doi.org/10.1038/ncomms14835
- Song, J. J. et al. Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J. Biol. Chem. 277, 46566-46575 (2002). https://doi.org/10.1074/jbc.M206826200
- Rhee, S. G., Woo, H. A., Kil, I. S. & Bae, S. H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410 (2012). https://doi.org/10.1074/jbc.R111.283432
- Barranco-Medina, S., Lazaro, J. J. & Dietz, K. J. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 583, 1809-1816 (2009). https://doi.org/10.1016/j.febslet.2009.05.029
- Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr. Opin. Cell Biol. 10, 205-219 (1998). https://doi.org/10.1016/S0955-0674(98)80143-9
- Turjanski, A. G., Vaque, J. P. & Gutkind, J. S. MAP kinases and the control of nuclear events. Oncogene 26, 3240-3253 (2007). https://doi.org/10.1038/sj.onc.1210415
- Wagner, E. F. & Nebreda, A. R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537-549 (2009). https://doi.org/10.1038/nrc2694
- Guo, Y. L., Baysal, K., Kang, B., Yang, L. J. & Williamson, J. R. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J. Biol. Chem. 273, 4027-4034 (1998). https://doi.org/10.1074/jbc.273.7.4027
- Hanafusa, H. et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J. Biol. Chem. 274, 27161-27167 (1999). https://doi.org/10.1074/jbc.274.38.27161
- Hartsough, M. T. & Mulder, K. M. Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J. Biol. Chem. 270, 7117-7124 (1995). https://doi.org/10.1074/jbc.270.13.7117
- Engel,M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J. Biol. Chem. 274, 37413-37420 (1999). https://doi.org/10.1074/jbc.274.52.37413
- Yu, L., Hebert, M. C. & Zhang, Y. E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21, 3749-3759 (2002). https://doi.org/10.1093/emboj/cdf366
- Korpal, M. & Kang, Y. Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur. J. Cancer 46, 1232-1240 (2010). https://doi.org/10.1016/j.ejca.2010.02.040
- Kang, D., Park, W., Lee, S., Kim, J. H. & Song, J. J. Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell. Signal. 25, 1288-1300 (2013). https://doi.org/10.1016/j.cellsig.2013.01.014
- Kim, J., Kang, D., Sun, B. K., Kim, J. H. & Song, J. J. TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell. Signal. 25, 372-379 (2013). https://doi.org/10.1016/j.cellsig.2012.10.010
- Yoo, Y. A., Kim, Y. H., Kim, J. S. & Seo, J. H. The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer. Biochim. Biophys. Acta 1783, 438-447 (2008). https://doi.org/10.1016/j.bbamcr.2007.12.001
- Hernanda, P. Y. et al. SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma. Oncogene 34, 5055-5068 (2015). https://doi.org/10.1038/onc.2014.425
- Zhao, Y. et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol. Cancer 16, 79 (2017). https://doi.org/10.1186/s12943-017-0648-1
- Zhang, J. et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016, 4350965 (2016).
- Syed, V. TGF-beta signaling in cancer. J. Cell. Biochem. 117, 1279-1287 (2016). https://doi.org/10.1002/jcb.25496
Cited by
- Recurrent or Refractory High-Grade Gliomas Treated by Convection-Enhanced Delivery of a TGFβ 2 -Targeting RNA Therapeutic: A Post-Hoc Analysis with Long-Term Follow-Up vol.11, pp.12, 2019, https://doi.org/10.3390/cancers11121892
- Unraveling the Molecular Nexus between GPCRs, ERS, and EMT vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6655417
- Development of a cytokine gene expression assay for the relative quantification of the African elephant (Loxodonta africana) cell-mediated immune responses vol.141, pp.None, 2018, https://doi.org/10.1016/j.cyto.2021.155453
- Attenuation of diethyl nitrosamine-induced hepatocellular carcinoma by taxifolin and/or alogliptin: The interplay between toll-like receptor 4, transforming growth factor beta-1, and apoptosis vol.40, pp.10, 2018, https://doi.org/10.1177/09603271211008496
- TGFβ Signaling in the Pancreatic Tumor Microenvironment vol.13, pp.20, 2018, https://doi.org/10.3390/cancers13205086
- Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models vol.179, pp.None, 2021, https://doi.org/10.1016/j.addr.2021.114003