DOI QR코드

DOI QR Code

Serum Copeptin Levels Predict Clinical Outcomes After Successful Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction

  • Choi, Hyun-Jung (Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital) ;
  • Kim, Min Chul (Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital) ;
  • Sim, Doo Sun (Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital) ;
  • Hong, Young Joon (Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital) ;
  • Kim, Ju Han (Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital) ;
  • Jeong, Myung Ho (Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital) ;
  • Kim, Soo-Hyun (Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital) ;
  • Shin, Myung-Geun (Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital) ;
  • Ahn, Youngkeun (Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital)
  • Received : 2017.10.25
  • Accepted : 2018.05.21
  • Published : 2018.11.01

Abstract

Background: Serum copeptin has been demonstrated to be useful in early risk stratification and prognostication of patients with acute myocardial infarction (AMI). However, the prognostic value of copeptin after percutaneous coronary intervention (PCI) for clinical outcomes remains uncertain. We investigated the prognostic role of serum copeptin levels immediately after successful PCI as a prognostic marker for major adverse cardiac events (MACE; comprising death, repeat PCI, recurrent MI, or coronary artery bypass grafting) in patients with AMI. Methods: A retrospective study was performed in 149 patients with AMI who successfully received PCI. Serum copeptin levels were analyzed in blood samples collected immediately after PCI. The association between copeptin levels and MACE during the follow-up period was evaluated. Results: MACE occurred in 34 (22.8%) patients during a median follow-up of 30.1 months. MACE patients had higher copeptin levels than non-MACE patients did. Multiple logistic regression analysis showed that the increase in serum copeptin levels was associated with increased MACE incidence (odds ratio=1.6, P =0.005). Conclusions: A high level of serum copeptin measured immediately after PCI was associated with MACE in patients with AMI during long-term follow-up. Serum copeptin levels can serve as a prognostic marker in patients with AMI after successful PCI.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute, National Research Foundation of Korea (NRF), Chonnam National University Hospital

References

  1. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35. https://doi.org/10.1056/NEJMoa1002358
  2. Zellweger MJ, Kaiser C, Jeger R, Brunner-La Rocca HP, Buser P, Bader F, et al. Coronary artery disease progression late after successful stent implantation. J Am Coll Cardiol 2012;59:793-9. https://doi.org/10.1016/j.jacc.2011.11.024
  3. Akkerhuis KM, Alexander JH, Tardiff BE, Boersma E, Harrington RA, Lincoff AM, et al. Minor myocardial damage and prognosis: are spontaneous and percutaneous coronary intervention-related events different? Circulation 2002;105:554-6. https://doi.org/10.1161/hc0502.104278
  4. Ioannidis JP, Karvouni E, Katritsis DG. Mortality risk conferred by small elevations of creatine kinase-MB isoenzyme after percutaneous coronary intervention. J Am Coll Cardiol 2003;42:1406-11. https://doi.org/10.1016/S0735-1097(03)01044-1
  5. Jang JS, Jin HY, Seo JS, Yang TH, Kim DK, Kim DS, et al. Prognostic value of creatine kinase-myocardial band isoenzyme elevation following percutaneous coronary intervention: a meta-analysis. Catheter Cardiovasc Interv 2013;81:959-67. https://doi.org/10.1002/ccd.24542
  6. Bolignano D, Cabassi A, Fiaccadori E, Ghigo E, Pasquali R, Peracino A, et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med 2014;52:1447-56.
  7. Morgenthaler NG, Struck J, Jochberger S, Dunser MW. Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab 2008;19:43-9. https://doi.org/10.1016/j.tem.2007.11.001
  8. Land H, Schutz G, Schmale H, Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 1982;295:299-303. https://doi.org/10.1038/295299a0
  9. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 2006;52:112-9. https://doi.org/10.1373/clinchem.2005.060038
  10. Tasevska I, Enhorning S, Persson M, Nilsson PM, Melander O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 2016;102:127-32. https://doi.org/10.1136/heartjnl-2015-308183
  11. Tu WJ, Dong X, Zhao SJ, Yang DG, Chen H. Prognostic value of plasma neuroendocrine biomarkers in patients with acute ischaemic stroke. J Neuroendocrinol 2013;25:771-8. https://doi.org/10.1111/jne.12052
  12. Voors AA, von Haehling S, Anker SD, Hillege HL, Struck J, Hartmann O, et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J 2009;30:1187-94. https://doi.org/10.1093/eurheartj/ehp098
  13. CLSI. Procedures for the Handling and Processing of Blood Specimen for Common Laboratory Tests; 4th ed. H18-A4. Wayne, PA: Clinical and Laboratory Standards Institute, 2010.
  14. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol 2012;60:1581-98. https://doi.org/10.1016/j.jacc.2012.08.001
  15. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39:119-77. https://doi.org/10.1093/eurheartj/ehx393
  16. Manginas A, Gatzov P, Chasikidis C, Voudris V, Pavlides G, Cokkinos DV. Estimation of coronary flow reserve using the Thrombolysis In Myocardial Infarction (TIMI) frame count method. Am J Cardiol 1999;83: 1562-5. https://doi.org/10.1016/S0002-9149(99)00149-6
  17. Myler RK, Shaw RE, Stertzer SH, Hecht HS, Ryan C, Rosenblum J, et al. Lesion morphology and coronary angioplasty: current experience and analysis. J Am Coll Cardiol 1992;19:1641-52. https://doi.org/10.1016/0735-1097(92)90631-V
  18. Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 2007;115:2344-51. https://doi.org/10.1161/CIRCULATIONAHA.106.685313
  19. Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 2009;54:60-8. https://doi.org/10.1016/j.jacc.2009.01.076
  20. Slagman A, Searle J, Muller C, Mockel M. Temporal release pattern of copeptin and troponin T in patients with suspected acute coronary syndrome and spontaneous acute myocardial infarction. Clin Chem 2015; 61:1273-82. https://doi.org/10.1373/clinchem.2015.240580
  21. von Haehling S, Papassotiriou J, Morgenthaler NG, Hartmann O, Doehner W, Stellos K, et al. Copeptin as a prognostic factor for major adverse cardiovascular events in patients with coronary artery disease. Int J Cardiol 2012;162:27-32. https://doi.org/10.1016/j.ijcard.2011.12.105
  22. Khan SQ, Dhillon OS, O'Brien RJ, Struck J, Quinn PA, Morgenthaler NG, et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 2007;115:2103-10. https://doi.org/10.1161/CIRCULATIONAHA.106.685503
  23. Kelly D, Squire IB, Khan SQ, Quinn P, Struck J, Morgenthaler NG, et al. C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodeling, and clinical heart failure in survivors of myocardial infarction. J Card Fail 2008;14:739-45. https://doi.org/10.1016/j.cardfail.2008.07.231
  24. Katan M, Nigro N, Fluri F, Schuetz P, Morgenthaler NG, Jax F, et al. Stress hormones predict cerebrovascular re-events after transient ischemic attacks. Neurology 2011;76:563-6. https://doi.org/10.1212/WNL.0b013e31820b75e6
  25. Katan M, Fluri F, Morgenthaler NG, Schuetz P, Zweifel C, Bingisser R, et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann Neurol 2009;66:799-808. https://doi.org/10.1002/ana.21783
  26. Jarai R, Mahla E, Perkmann T, Jarai R, Archan S, Tentzeris I, et al. Usefulness of pre-operative copeptin concentrations to predict post-operative outcome after major vascular surgery. Am J Cardiol 2011;108: 1188-95. https://doi.org/10.1016/j.amjcard.2011.06.024
  27. Geri G, Dumas F, Chenevier-Gobeaux C, Bougle A, Daviaud F, Morichau-Beauchant T, et al. Is copeptin level associated with 1-year mortality after out-of-hospital cardiac arrest? Insights from the Paris registry*. Crit Care Med 2015;43:422-9. https://doi.org/10.1097/CCM.0000000000000716
  28. Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015;65: 1454-71. https://doi.org/10.1016/j.jacc.2015.02.032
  29. McMurray JJ. Clinical practice. Systolic heart failure. N Engl J Med 2010;362:228-38. https://doi.org/10.1056/NEJMcp0909392

Cited by

  1. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? vol.104, pp.11, 2019, https://doi.org/10.1210/jc.2019-01049
  2. Early myocardial injury biomarkers in diabetic hyperlipidemic rats: Impact of 10-dehydrogingerdione and vitamin D3 vol.245, pp.15, 2018, https://doi.org/10.1177/1535370220943124
  3. Cardiac Rehabilitation with Targeted Intensity Improves Cardiopulmonary Functions Accompanying with Reduced Copeptin Level in Patients with Coronary Artery Disease vol.14, pp.2, 2018, https://doi.org/10.1007/s12265-020-10055-y