DOI QR코드

DOI QR Code

Inhibitory Effect of Metal Surface on the Antimicrobial Resistance Microorganism

금속표면이 항생제 내성균주의 생육억제에 미치는 영향

  • Kim, Jung-Beom (Department of Food Science and Technology, Sunchon National University) ;
  • Kim, Jae-Kwang (Department of Laboratory Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Kim, Hyunjung (Department of Laboratory Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Cho, Eun Jung (Department of Laboratory Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Park, Yeon-Joon (Department of Laboratory Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital) ;
  • Lee, Hae Kyung (Department of Laboratory Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital)
  • 김중범 (순천대학교 식품공학과) ;
  • 김재광 (가톨릭대학교 의정부성모병원 진단검사의학과) ;
  • 김현정 (가톨릭대학교 의정부성모병원 진단검사의학과) ;
  • 조은정 (가톨릭대학교 의정부성모병원 진단검사의학과) ;
  • 박연준 (가톨릭대학교 서울성모병원 진단검사의학과) ;
  • 이혜경 (가톨릭대학교 의정부성모병원 진단검사의학과)
  • Received : 2018.04.23
  • Accepted : 2018.07.19
  • Published : 2018.12.20

Abstract

Background: The aim of this study was to comparatively evaluate the bactericidal effects of copper, brass (copper 78%, tin 22%), and stainless steel against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VREFM), and multidrug-resistant Pseudomonas aeruginosa (MRPA). Methods: The isolates (MRSA, VREFM, MRPA) used in this study were mixed wild type 3 strains isolated from patients treated at Uijeongbu St. Mary's Hospital in 2017. These strains showed patterns of multidrug resistance. The lyophilized strains were inoculated into and incubated for 24 hr in tryptic soy broth at $35^{\circ}C$. The initial bacterial inoculum concentration was adjusted to $10^5CFU/mL$. A 100-mL bacterial suspension was incubated in containers made of brass (copper 78%, tin 22%), copper (above 99% purity), and stainless steel at $35^{\circ}C$. Viable counts of bacteria strains were measured for 9 days. Results: In this study, the bactericidal effects of copper and brass on MRSA, VREFM, and MRPA were verified. The bactericidal effect of stainless steel was much weaker than those of copper and brass. The bactericidal effect was stronger on MRPA than on MRSA or VREFM. Conclusion: To prevent cross infection of multidrug resistant bacteria in hospitals, further studies of longer duration are needed for testing of copper materials on objects such as door knobs, faucets, and bed rails.

배경: 본 연구는 국내 병원에서 분리된 methicillin 내성 Staphylococcus aureus (MRSA), vancomycin 내성 Enterococcus faecium (VREFM) 및 다제 내성 multidrug-resistant Pseudomonas aeruginosa (MRPA) 등에 대한 구리, 유기(구리 78%, 주석 22%), stainless steel의 살균력을 비교 실험하여, 국내 병원 환경에 의한 항생제 내성 균주 교차 감염을 예방하는 데 구리와 유기의 활용성을 분석하고자 하였다. 방법: MRSA, VREFM, MRPA 균주는 2017년 의정부성모병원에서 분리 동정된 wild type 3균주씩을 혼합하여 사용하였으며 모두 항생제 다제 내성 균주로 나타났다. MRSA, VREFM, MRPA 균주 각각을 Tryptic soy broth (Oxoid, England)에 접종하여 $35^{\circ}C$에서 24시간 배양한 후, 각각 초기 접종균액의 균수를 $10^5\;log\;CFU/mL$로 조정하였다. 구리, 유기, stainless steel 용기에 준비된 MRSA, VREFM, MRPA 접종균액 100 mL씩을 각각 접종한 후, 습도가 유지되도록 덮개를 덮은 후 $35^{\circ}C$ incubator에서 초기부터 9일까지 생존균수를 측정하였다. 결과: 본 연구결과 국내에서 분리된 항생제 다제 내성 MRSA, VREFM, MRPA 균주에 대한 구리 및 유기의 살균효과를 확인하였다. Stainless steel의 살균력은 구리 및 유기에 비해 매우 미약하였고, MRSA 및 VREFM에 비해 MRPA의 살균효과가 크게 나타났다. 결론: 교차감염을 예방하기 위하여 병원 내 문손잡이, 수도꼭지, 침대레일 등에 구리나 유기를 적용하여, 장기간 실험을 진행하고 있는 국외 사례와 같이, 국내 병원에서도 구리와 유기를 이용한 병원 내 교차 감염 예방 연구가 필요하다고 생각한다.

Keywords

References

  1. Kim JM. Antibiotic resistance of Helicobacter pylori isolated from Korean patients. Korean J Gastroenterol 2006;47:337-49.
  2. Jevons MP. "Celbenin" - resistant staphylococci. Br Med J 1961;1:124-5.
  3. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol 2011;77:1541-7. https://doi.org/10.1128/AEM.02766-10
  4. Burton DC, Edwards JR, Horan TC, Jernigan JA, Fridkin SK. Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in US intensive care units, 1997-2007. JAMA 2009;301:727-36. https://doi.org/10.1001/jama.2009.153
  5. Lee H, Yong D, Lee K, Hong SG, Kim EC, Jeong SH, et al. Antimicrobial resistance of clinically important bacteria isolated from 12 hospitals in Korea in 2004. Korean J Clin Microbiol 2005;8:66-73.
  6. Moon HW, Kim HJ, Hur M, Yun YM. Antimicrobial susceptibility profiles of Staphylococcus aureus isolates classified according to their origin in a tertiary hospital in Korea. Am J Infect Control 2014;42:1340-2. https://doi.org/10.1016/j.ajic.2014.08.014
  7. Stosor V, Noskin GA, Peterson LR. The management and prevention of vancomycin-resistant enterococci. Infect Med 1996;13:487-88, 493.
  8. Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect 2012;82:19-24. https://doi.org/10.1016/j.jhin.2012.06.007
  9. Weber DJ and Rutala WA. Understanding and preventing transmission of healthcare-associated pathogens due to the contaminated hospital environment. Infect Control Hosp Epidemiol 2013;34:449-52. https://doi.org/10.1086/670223
  10. Kim YA, Lee H, Lee K. Contamination of the hospital environmental by pathogenic bacteria and infection control. Korean J Nosocomial Infect Control 2015;20:1-6. https://doi.org/10.14192/kjnic.2015.20.1.1
  11. Bae JY, Kang CK, Choi SJ, Lee E, Choe PG, Park WB, et al. Sudden deaths of neonates receiving intravenous infusion of lipid emulsion contaminated with Citrobacter freundii. J Korean Med Sci 2018;33:e97. https://doi.org/10.3346/jkms.2018.33.e97
  12. Dollwet HHA and Sorenson JRJ. Historic uses of copper compounds in medicine. J Trace Elem Med 1985;2:80-7.
  13. Kuhn PJ. Door knobs: a source of nosocomial infection? Diagnostic Medicine. https://www.antimicrobialcopper.org/sites/default/files/upload/media-library/files/pdfs/uk/scientific_literature/kuhn-doorknob.pdf [Online] (last visited 12 November 2018).
  14. Kusumaningrum HD, Riboldi G, Hazeleger WC, Beumer RR. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int J Food Microbiol 2003;85:227-36. https://doi.org/10.1016/S0168-1605(02)00540-8
  15. Agarwala M, Choudhury B, Yadav RN. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 2014;54:365-8. https://doi.org/10.1007/s12088-014-0462-z
  16. Gould SWJ, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 2009;59:151-6. https://doi.org/10.1007/BF03175613
  17. Carson KC, Bartlett JG, Tan TJ, Riley TV. In vitro susceptibility of methicillin-resistant Staphylococcus aureus and methicillinsusceptible Staphylococcus aureus to a new antimicrobial, copper silicate. Antimicrob Agents Chemother 2007;51:4505-7. https://doi.org/10.1128/AAC.00771-07
  18. Lee EJ and Park JH. Inactivation activity of bronze alloy Yugi for reduction of cross-contamination of food-borne pathogen in food processing. J Food Hyg Saf 2008;23:309-13.
  19. Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 2010;87:1875-9. https://doi.org/10.1007/s00253-010-2640-1
  20. Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, et al. Role of copper in reducing hospital environment contamination. J Hosp Infect 2010;74:72-7. https://doi.org/10.1016/j.jhin.2009.08.018
  21. Jung MK, Lee MY, Park JH. Inhibitory effect of cupric ion diffused from brass ware on the growth of E. coli O157:H7, S. typhimurium, S. aureus, and B. cereus. Food Sci Biotechnol 2004;13:680-3.
  22. CLSI. Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement. CLSI document M100-S23. Wayne, PA: Clinical and Laboratory Standards Institutes; 2013.
  23. Weinstein RA. Epidemiology and control of nosocomial infections in adult intensive care units. Am J Med 1991;91:179S-84S. https://doi.org/10.1016/0002-9343(91)90012-M