DOI QR코드

DOI QR Code

상업어선의 어군탐지기를 이용한 남극크릴(Euphausia superba) 자원량 추정

Estimating the Abundance of Antarctic Krill Euphausia superba Using a Commercial Trawl Vessel

  • 최석관 (국립수산과학원 원양자원과) ;
  • 한인우 (전남대학교 수산과학과) ;
  • 안두해 (국립수산과학원 원양자원과) ;
  • 정상덕 (국립수산과학원 원양자원과) ;
  • 윤은아 (전남대학교 해양기술학부) ;
  • 이경훈 (전남대학교 해양기술학부)
  • Choi, Seok-Gwan (Distant Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Han, Inwoo (Division of Fisheries Science, Chonnam National University) ;
  • An, Doo-hae (Distant Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Chung, Sang-deok (Distant Water Fisheries Resources Research Division, National Institute of Fisheries Science) ;
  • Yoon, Eun-A (Department of Marine Technology, Chonnam National University) ;
  • Lee, Kyounghoon (Department of Marine Technology, Chonnam National University)
  • 투고 : 2018.06.22
  • 심사 : 2018.07.25
  • 발행 : 2018.08.31

초록

The Antarctic krill Euphausia superba is important commercially and ecologically as a basic component of the Antarctic Ocean ecosystem. To manage this resource, it is important to determine the distribution and standing of krill in the water layer. Acoustic methods can capture information about the entire water layer quickly. Acoustic surveys were conducted from March 3 to March 14, 2017, using the commercial fishing boat Sejong (7,765 tons). Acoustic systems with a frequency of 38 kHz and a 200 kHz commercial echo sounder (ES70, Simrad, Norway) were used and the acquired data were processed using post processing software. The density and standing of Antarctic krill were determined using the two-frequency difference method, using the characteristics of two frequencies. To compare the frequency difference of krill, the method using the frequency difference according to the krill length, recommended by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the values extracted according to the krill length at survey stations where only krill were collected during the study period, were compared. The frequency difference ranges were 3.96-5.91 dB and -3.0~13.8 dB, respectively.

키워드

참고문헌

  1. Atkinson A, Siegel V, Pakhomov EA, Jessopp MJ and Loeb V. 2009. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res Part 1 Oceanogr Res Pap 56, 727-740. https://doi.org/10.1016/j.dsr.2008.12.007.
  2. Azzali M, Leonori I and Lanciani G. 2004. A hybrid approach to acoustic classification and length estimation of krill. CCAMLR Science 11, 33-58.
  3. Brierley AS, Fernandes PG, Brandon MA, Armstrong F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG and Griffiths G, 2002. Antarctic krill under sea ice: elevated abundance in a narrow band just South of ice edge. Science 295, 1890-1892. https://doi.org/10.1126/science.1068574.
  4. Brierley AS, Watkins JL, Goss C, Wilkinson MT and Everson I. 1999. Acoustic estimates of krill density at South Georgia, 1981 TO 1998. CCAMLR Science 6, 47-57.
  5. CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources). 2000. Report of the nineteenth meeting of the scientific committee. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia. SC-CAMLR-XIX, 1-522.
  6. CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources). 2008. Report of the twenty-seventh meeting of the Scientific Committee. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia. SC-CAMLR-XXVII, 1-749.
  7. CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources). 2010. Report of the twenty-ninth meeting of the Scientific Committee. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia. SC-CAMLR-XXIX, 1-426.
  8. Cox MJ, Watkins JL, Reid K and Brierley AS. 2011. Spatial and temporal variability in the structure of aggregations of Antarctic krill (Euphausia superba) around South Georgia, 1997-1999. ICES J Mar Sci 68, 489-498. https://doi.org/10.1093/icesjms/fsq202.
  9. Choi SG, Lee HB, Lee KH and Lee JB. 2016. A study on calibration for commercial split beam echosounder using the bottom backscattering strength from a fishing vessel near the South Shetland Islands, Antarctica. J Kor Soc Fish Tech 52, 318-324. http://dx.doi.org/10.3796/KSFT.2016.52.4.318.
  10. Demer DA and Renfree JS. 2008. Variations in echosoundertransducer performance with water temperature. ICES J Mar Sci 65, 1021-1035. https://doi.org/10.1093/icesjms/fsn066.
  11. De Robertis A and Higginbottom I. 2007. A post-processing technique to estimate the signal-to noise ratio and remove echosounder background noise. ICES J Mar Sci 64, 1282-1291. https://doi.org/10.1093/icesjms/fsm112.
  12. Everson I. 1982. Diuranal variations in mean volume backscattering strength of Antarctic krill (Euphausia superba) patch. J Plankton Res 4, 155-162. https://doi.org/10.1093/plankt/4.1.155.
  13. Everson I. 2000. 3.3 The Southern Ocean. In: Krill Biology, Ecology and Fisheries. Everson I, ed. Blackwell Science Oxford, London, U.K., 63-79.
  14. Fielding S, Watkins JL, Trathan PN, Enderlein P, Waluda CM, Stowasser G, Tarling GA and Murphy EJ. 2014. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997-2013. ICES J Mar Sci 71, 2578-2588. https://doi.org/10.1093/icesjms/fsu104.
  15. Foote KG, Knudsen HP, Vestnes G, MacLennan DN and Simmonds EJ. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Cooperative Research Report 144, 1-69.
  16. Greene CH, Stanton TK, Wiebe PH and McCiatchie SAM. 1991. Acoustic estimates of Antarctic krill. Nature 349, 110. https://doi.org/10.1038/349110a0.
  17. Hewitt RP and Demer DA. 1993. Dispersion and abundance of Antarctic krill in the vicinity of Elephant Island in the 1992 austral summer. Mar Ecol Prog Ser 99, 29-39. https://doi.org/10.3354/meps099029
  18. Hewitt RP, Watkins J, Naganobu M, Sushin V, Brierley AS, Demer D and Brandon M. 2004. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Sea Res Part 2 Top Stud Oceanogr 51, 1215-1236. https://doi.org/10.1016/j.dsr2.2004.06.011.
  19. Hewitt RP, Demer DA and Emery JH. 2003. An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991-1992 through 2001-2002. Aqua Living Resour 16, 205-213. https://doi.org/10.1016/S0990-7440(03)00019-6.
  20. ICES (International Council for the Exploration of the Sea). 2007. Collection of acoustic data from fishing vessels. Document 287.
  21. Ichii T, Katayama K, Obitsu N, Ishii H and Naganobu M. 1998. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: relationship to environmental parameters. Deep Sea Res Part 1 Oceanogr Res Pap 45, 1235-1262. https://doi.org/10.1016/S0967-0637(98)00011-9.
  22. Jarvis T, Kelly N, Kawaguchi S, Wijk E and Nicol S. 2010. Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica ($30-80^{\circ}E$) in January-March 2006. Deep Sea Res 2 Top Stud Oceanogr 57, 916-933. https://doi.org/10.1016/j.dsr2.2008.06.013.
  23. Jolly GM and Hampton I. 1990. A stratified random transect design for acoustic surveys of fish stocks. Can J Fish Aquat Sci 47, 1282-1291. https://doi.org/10.1139/f90-147.
  24. Kang DH, Hwang DJ and Kim SA. 1999. Biomass and distribution of Antartic Krill, Euphausia superba, in the Northern part of the South Shetland Island, Antartic Ocean. J Korean Fish Soc 32, 737-747.
  25. Kang DH, Shin HC, Lee YH, Kim YS and Kim SA. 2005. Acoustic estimate of the krill (Euphausia superba) density between south Shetland islands and south Orkney islands, Antarctica, during 2002/2003 Austral summer. Ocean Polar Res 27, 75-86. https://doi.org/10.4217/OPR.2005.27.1.075.
  26. Kim EH, Mukai T and IIDA K. 2016. Acoustic identification of krill and copepods using difference of volume backscattering strength around Funka Bay, Hokkido. Japan Nippon Suisan Gakkaishi 82, 587-600. https://doi.org/10.2331/suisan.15-00039.
  27. La HS, Lee H, Kang D, Lee S and Shin HC. 2016. Volume backscattering strength of ice krill (Euphausia crystallorophias) in the Amundsen Sea coastal polynya. Deep Sea Res Part 2 Top Stud Oceanogr 123, 86-91. https://doi.org/10.1016/j.dsr2.2015.05.018.
  28. Lawson GL, Wiebe PH, Stanton TK and Ashjian CJ. 2008. Euphausiid distribution along the western Antarctic Peninsula. A. Development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass. Deep Sea Res Part 2 Top Stud Oceanogr 55, 412-431. https://doi.org/10.1016/j.dsr2.2007.11.010.
  29. Miller DGM and Hampton I. 1989. Biology and ecology of the Antarctic krill (Euphausia superba Dana): a review. Biomasss Sci Ser 9, 166.
  30. Reiss CS, Cossio AM, Loeb V and Demer DA. 2008. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996-2006. ICES J Mar Sci 65, 497-508. https://doi.org/10.1093/icesjms/fsn033.
  31. Sato M, Horne JK, Parker-Stetter SL and Keister JE .2015. Acoustic classification of coexisting taxa in a coastal ecosystem. Fisheries Research 172, 130-136. https://doi.org/10.1016/j.fishres.2015.06.019.
  32. Saunders RA and Brierley AS. 2007. Intra-annual variability in the density of Antarctic krill (Euphausia superba) at South Georgia, 2002-2005: winter-year variation provides a new framework for interpreting previous 'annual' estimates of krill density. CCAMLR Science 14, 27-41.
  33. Wang X, Zhao X and Zhang J. 2015. A noise removal algorithm for acoustic data with strong interference based on post-processing techniques. CCAMLR Science 22, 1-11.
  34. Wiebe PH, Chu D, Kaartvedt S, Hundt A, Melle W, Ona E and Batta-Lona P. 2009. The acoustic properties of Salpa thompsoni. ICES J Mar Sci 67, 583-593. https://doi.org/10.1093/icesjms/fsp263.