DOI QR코드

DOI QR Code

Effect of Mixed Oxidants and Sodium Hypochlorite on Pathogenic Microorganisms in Olive flounder Paralichthys olivaceus Aquaculture on Jeju Island

제주도 양식 넙치(Paralichthys olivaceus)에서 분리한 병원균 3종에 대한 Mixed Oxidant 및 차아염소산나트륨 살균효과

  • Park, Cheonman (Department of Marine Life Science, Jeju National University) ;
  • Kim, Ki-hyuk (Department of Marine Life Science, Jeju National University) ;
  • Moon, Hye-na (Department of Marine Life Science, Jeju National University) ;
  • Yeo, In-Kyu (Department of Marine Life Science, Jeju National University)
  • 박천만 (제주대학교 해양생명과학과) ;
  • 김기혁 (제주대학교 해양생명과학과) ;
  • 문혜나 (제주대학교 해양생명과학과) ;
  • 여인규 (제주대학교 해양생명과학과)
  • Received : 2018.04.06
  • Accepted : 2018.06.09
  • Published : 2018.08.31

Abstract

Marine pathogenic bacteria, such as Streptococcus parauberis, Edwardsiella tarda and Vibrio harveyi, can cause lethal infections in farmed fish, ozone and antibiotics, are employed to sterilize waters used for rearing fish to mitigate this threat. The most widely used method is treatment with sodium hypochlorite solution. However, the maintenance of a constant concentration of chlorine in rearing waters can be difficult. We investigated the potential of a mixed oxidant (MO) solution generated by electrolysis of sea water to improve water quality. We measured the survival rates of fish pathogenic bacteria exposed to different concentrations of MO (0.5, 1.0, 1.5 and 2.0 MO) and sodium hypochlorite (0.5, 1.0, 1.5 and 2.0 ppm) for various lengths of time (0, 5, 10, 15, 20, 25 and 30 min). We found a time-dependent decrease in the survival rates of the tested pathogenic microorganisms. The sterilization effect of the MO solution on pathogenic organisms was greater than that of sodium hypochlorite for gram-negative and gram-positive bacteria. We conclude that MO solution produced by electrolysis could be used to maintain a constant chlorine concentration in aquaculture systems.

Keywords

References

  1. Alvarez JJ, Austin B, Alvarze AM and Reyes H. 1998. Vibrio harveyi: A pathogen of penaeid shirimps and fish in Venezuela. J Fish Dis 21, 313-316. https://doi.org/10.1046/j.1365-2761.1998.00101.x.
  2. Ann k and Rimstad E. 2001. Inactivation of infectious salmon virus, viral haemorrhagic septicaemina virus and infectious pancreatic necrosis virus in water using UVC irradiation. Dis Aqua Org 48, 1-5. https://doi.org/10.3354/dao048001.
  3. Baeck GW, Kim JH, Gomez DK and Park SC. 2006. Isolation and characterization of Streptococcus sp. from diseased flounder (Paralichthys olivaceus) in Jeju island. J Vet Sci 7, 53-58. https://doi.org/10.4142/jvs.2006.7.1.53.
  4. Barton BA and Iwama GK. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1, 3-26. https://doi.org/10.1016/0959-8030(91)90019-g.
  5. Blaser MJ, Smith PF, Wang WLL and Hoff JC. 1986. Inactiviation of campylobacter jejuni by chlorine and monochloramine. Appl Environ Microbiol 51, 307-311.
  6. Boylan JA, Lawrence KA, Downey JS and Gherardini FC. 2008. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species. Mol Microbiol 68, 786-799. https://doi.org/10.1111/j.1365-2958.2008.06204.x.
  7. Braungs WA. 1973. Effects of residual chlorine on aquatic life. J Water Pollut Control Fed 45, 2180-2193.
  8. Buck GE, Parashall KA and Davis CP. 1983. Electron microscopy of the coccoid form of Campylobacter jejuni. J Clin Microbiol 18, 420-421.
  9. Diao HF, Li XY, Gu JD, Shi HC and Xie ZM. 2004. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and fenton reaction. Process Biochem 39, 1421-1426. https://doi.org/10.1016/S0032-9592(03)00274-7.
  10. Drees KP, Abbaszadegan M and Maier RM, 2003. Comparative electrochemical inactivation of bacteria and bacteriophage. Water Res 37, 2291-2300. https://doi.org/10.1016/S0043-1354(03)00009-5.
  11. Fang Q, Shang C and Chen G. 2006. MS2 inactivation by chloride-assisted electrochemical disinfection. J Environ Eng 132, 13-22. https://doi.org/10.1061/(asce)0733-9372(2006)132:1(13).
  12. Fox CH, Johnson FB, Whiting J and Roller PP. 1985. Formaldehyde fixation. J Histochem Cytochem 33, 845-853. https://doi.org/10.1177/33.8.3894502
  13. Hwang SD, Woo SH, Kim SH, Ha SJ, Jung YE and Park SI. 2008. Immunomodulatory characteristics of Streptococcus parauberis isolated from infected olive flounder, Paralichthys olivaceus. J Fish Pathol 21, 157-166.
  14. Jorquera MA., Valencia G, Eguchi M, Katayose M and Riquelme C. 2002. Disinfection of seawater for hatchery aquaculture systems using electrolytic water treatment. Aquaculture 207, 213-224. https://doi.org/10.1016/S0044-8486(01)00766-9.
  15. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A and Brooks AD. 2011. Nonthermal dielectric-barrier discharge plasma-induced in activation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents and Chemother 55, 1053-1062. https://doi.org/10.1128/aac.01002-10.
  16. Kanai K. 1993. Bacterial diseases of flounder, Paralichthys olivaceus. J Fish Pathol 6, 197-208.
  17. Kang CY, Kang BJ, Moon YG, Kim KY and Heo MS. 2007. Characterization of Streptococcus parauberis isolated from cultured olive flounder, Paralichthys olivaceus in the Jeju Island. J Fish Pathol 39, 56-61.
  18. Kerwick MI, Reddy SM, Chamberlain AHL and Holt DM. 2005. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection?. Electrochim Acta 50, 5270-5277. https://doi.org/10.1016/j.electacta.2005.02.074.
  19. Kim JW, Cho MY, Park GH, Won KM, Choi HS, Kim MS and Park M. 2010. Statistical data on infectious diseases of cultured olive flounder Paralichthys olivaceus from 2005 to 2007. J fish pathol 23, 369-377.
  20. Kim JW, Lee HN, Jee BY, Woo SH, Kim YJ and Lee MK. 2012. Monitoring of the mortalities in the aquaculture farms of south korea. J Fish Pathol 25, 271-277. https://doi.org/10.7847/jfp.2012.25.3.271.
  21. Lane DJ. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E and Goodfellow M, Eds. 115-175.
  22. Lee CH, Kim PY, Ko CS, Oh DC and Kang BJ. 2007. Biological characteristics of Streptococcus iniae and Streptococcus parauberis isolated from cultured flounder, Paralichthys olivaceus in Jeju. J Fish Pathol 20, 33-40.
  23. Lee SJ, Lee DC, Kim H and Lee H. 2002. Comparison of chlorine, chlorine dioxide and ozone as disinfectants in drinking water. Kor J Env Hlth Soc 28, 1-8.
  24. Letux F and Meyer FP. 1972. Mixture of malachite green and formaline for controling Ichthyophthirius and other protozoan parasites of fish. Prog Fish Cult 34. 21-26. https://doi.org/10.1577/1548-8640(1972)34[21:momgaf]2.0.co;2.
  25. Li XY, Ding F, Lo PSY and Sin SHP. 2002. Electrochemical disinfection of saline wastewater effluent. J Environ Eng 128, 697-704. https://doi.org/10.1061/(asce)0733-9372(2002)128:8(697).
  26. Ludwig W. 2007. Nucleic acid techniques in bacterial systematics and identification. Int j food microbiol 120, 225-236. https://doi.org/10.1016/j.ijfoodmicro.2007.06.023.
  27. Martinez-Huitle CA and Enric B. 2008. Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed. 47, 1998-2005. https://doi.org/10.1002/anie.200703621.
  28. Matsunaga T, Nakasono S, Kitajima Y and Horiguchi K. 1994. Electrochemical disinfection of bacteria in drinking water using activated carbon fibers. Biotechnol Bioeng 43, 429-433. https://doi.org/10.1002/bit.260430511.
  29. Matsunaga T, Okochi M, Takahashi M, Nakayama T, Wake H and Nakamura N. 2000. TiN electrode reactor for disinfection of drinking water. Water Res 34, 3117-3122. https://doi.org/10.1016/s0043-1354(00)00066-x.
  30. Merrell BR, Walker BI and Coolbaugh JC. 1981. Campylobacter fetus ss. Jejuni, a newly recognized enteric pathogen: morphology and intestinal colonization. Scanning Electron Microse 4, 125-131.
  31. MOMAF (Ministry of Maritime Affairs and Fisheries). 1998. Statistical yearbook of maritime affairs and fisheries. Ministry of Maritime Affairs and Fisheries, Seoul, Korea.
  32. Nakayama T, Wake H, Ozawa K, Kodama H, Nakamura N and Matsunaga T. 1998. Use of a titanium nitride for electrochemical inactivation of marine bacteria. Environ Sci Technol 32, 798-801. https://doi.org/10.1021/es970578h.
  33. NFRDI (National Fisheries Research and Development Institute). 2015. Prevention of bacterial fish disease and medical treatment for produce health fish. National Fisheries Research and Development Institute, Busan, Korea.
  34. Nguyen HT and Kanai K. 1999. Selective agars for the isolation of Streptococcus iniae from Japanese flounder, Paralichthys olivaceus and its cultural environment. J Appl Microbiol 86, 769-776. ttps://doi.org/10.1046/j.1365-2672.1999.00724.x.
  35. Palumbo SA. 1984. Heat injury and repair in Campylobacter jejuni. Appl Envirion Microbiol 48, 477-480.
  36. Park KH, Oh MJ and Kim HY. 2003. Disinfection effect of chlorine dioxide on pathogenic bacteria. J aquaculture 16, 118-123. https://doi.org/10.1002/0471263397.env295.
  37. Patermarakis G and Fountoukidis E. 1990. Disinfection of water by electrochemical treatment. Water Res 24, 1491-1496. https://doi.org/10.1016/0043-1354(90)90083-i.
  38. Pickering AD. 1992. Rainbow trout husbandry: management of the stress response. Aquaculture 100, 125-139. https://doi.org/10.1016/0044-8486(92)90354-n.
  39. Raphael D, Wong TA, Moodnik R and Borden BG. 1981. The effect of temperature on the bactericidal efficiency of sodium hypochlorite. J Endod 7, 330-334. https://doi.org/10.1016/s0099-2399(81)80101-x.
  40. RhamanSME Ding T and Oh DH. 2010. Effectiveness of low concentration electrolyzed water to inactive foodborne pathogens under different environmental conditions. Int J Food Microbiol 139, 147-153. https://doi.org/10.1016/j.ijfoodmicro.2010.03.020 .
  41. Smibert RM. 1978. The genus Campylobacter. Ann Rev Miccrobiol 32, 673-709. https://doi.org/10.1007/springerreference_3854.
  42. Speare DJ, Goff G, MacIsaac P, Wechrkiwsky J and MacNair N. 1996. Effects of formalin and chloramine-T treatments on oxygen consumption of juvenile salmonids. J Aquatic Anim Health 8. 285-291. https://doi.org/10.1577/1548-8667(1996)008<0285:eofact>2.3.co;2.
  43. Statistics Korea. 2015. Aquaculture Status Survey. Statistics Korea, Daejeon, Korea.
  44. Stoner GE, Cahen GLJ, Sachyani M and Gileadi E. 1982. The mechanism of low frequency a.c. electrochemical disinfection. Bioelectrochem Bioenerg 9, 229-24. https://doi.org/10.1016/0302-4598(82)80013-5.
  45. Tak JK and Park JW. 2009. The use of ebselen for radioprotection in cultured cells and mice. Free Radic Biol Med 46, 1177-1185. https://doi.org/10.1016/j.freeradbiomed.2009.01.023.
  46. Tanaka T, Shimoda M, Hosokawa M, Taguchi T Wake H and Matsunaga T. 2013. Electrochemical disinfection of fish pathogens in seawater without the production of a lethal concentration of chlorine using a flow reactor. J biosci bioeng 116, 480-484. https://doi.org/10.1016/j.jbiosc.2013.04.013.