DOI QR코드

DOI QR Code

분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향

Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy

  • 최영신 (국립순천대학교 신소재공학과) ;
  • 장지훈 (국립순천대학교 신소재공학과) ;
  • 김건희 (한국생산기술연구원 강원지역본부) ;
  • 이창우 (한국생산기술연구원 강원지역본부) ;
  • 김휘준 (한국생산기술연구원 인천지역본부) ;
  • 이동근 (국립순천대학교 신소재공학과)
  • Choi, Young-Sin (Sunchon National University) ;
  • Jang, Ji-Hoon (Sunchon National University) ;
  • Kim, Gun-Hee (Gangwon Regional Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Chang-Woo (Gangwon Regional Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Hwi-Jun (Incheon Regional Division, Korea Institute of Industrial technology (KITECH)) ;
  • Lee, Dong-Geun (Sunchon National University)
  • 투고 : 2018.08.17
  • 심사 : 2018.08.22
  • 발행 : 2018.08.28

초록

Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.

키워드

참고문헌

  1. D. Gibson, R. Plume, E. Bergin, S. Ragan and N. Evans: Astrophys J., 705 (2009) 123. https://doi.org/10.1088/0004-637X/705/1/123
  2. H.K. Rafi, N.V. Karthik, Haijun Gong, Thomas L. Starr and Brent E. Stucker: J. Mater. Eng. Perform., 22 (2013) 3872. https://doi.org/10.1007/s11665-013-0658-0
  3. V. Chastand, P. Quaegebeur, W. Maia and E. Charkaluk: Mater. Charact., (2018) Available online 27 March (in press).
  4. N. Hrabe, T. G. Herold and T. Quinn: Int. J. Fatigue, 94 (2017) 202. https://doi.org/10.1016/j.ijfatigue.2016.04.022
  5. G.S. Shin, Y-T. Hyun, N-K. Park, Y-H. Park and D-G. Lee: J. Korean Powder Metall. Inst., 24 (2017) 235. https://doi.org/10.4150/KPMI.2017.24.3.235
  6. T. Vilaro, C. Colin and J. D. Bartout: Metall. Mater. Trans. A, 42 (2011) 3190. https://doi.org/10.1007/s11661-011-0731-y
  7. T.H. Becker, M. Beck and C. Scheffer: South Africal Journal of Industrial Engineering 26 (2015) 1.
  8. E. Wycisk, C. Emmelmann, S. Siddique and F. Walther: Adv. Mater. Res., 816-817 (2013) 134. https://doi.org/10.4028/www.scientific.net/AMR.816-817.134
  9. S. Hongbo, C. Zheyuan, L. Jianrong, G. Shuili and X. Jianzhong: Rare Met. Mater. Eng., 43 (2014) 780. https://doi.org/10.1016/S1875-5372(14)60083-7
  10. A. Kirchner, B. Kloden, T. WeiBgarber, B. Kieback, A. Schoberth, S. Bagehorn and D. Greitemeier: Euro PM2015 Proceedings: AM - Electron Beam Melting, (2015).
  11. H. Beladi, Q. Chao and G.S. Rohrer: Acta Mater., 80 (2014) 478. https://doi.org/10.1016/j.actamat.2014.06.064
  12. T. Ahmed and H.J. Rack: Mater. Sci. Eng., A 243 (1998) 206. https://doi.org/10.1016/S0921-5093(97)00802-2
  13. S.L. Lu, M. Qian, H.P. Tang, M. Yan, J. Wang and D.H. Stjohn: Acta Mater., 104 (2016) 303. https://doi.org/10.1016/j.actamat.2015.11.011
  14. S.T. Williams, P.J. Withers, I. Todd and P.B. Prangnell: Scripta Mater., 122 (2016) 72. https://doi.org/10.1016/j.scriptamat.2016.05.002
  15. Bin Zhang, K.M. Han, S. Shao, N. Shamsaei and S.M. Thompson: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium. (2017) 107.