DOI QR코드

DOI QR Code

아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway

  • 김기용 (강원대학교 환경융합학부) ;
  • 정성민 (강원대학교 환경융합학부) ;
  • 최영순 (한강물환경연구소 유역환경연구과) ;
  • ;
  • ;
  • 김범철 (강원대학교 환경융합학부)
  • Kim, Kiyong (Department of Environmetal Science, Kangwon National University) ;
  • Jung, Sungmin (Department of Environmetal Science, Kangwon National University) ;
  • Choi, Youngsoon (Watershed Environment Research Department, Han-River Environment Research Center) ;
  • Peiffer, Stefan (Hydrology department, University of Bayreuth) ;
  • Knorr, Klaus-Holger (Ecohydrology and Biogeochemistry Group, University of Munster) ;
  • Kim, Bomchul (Department of Environmetal Science, Kangwon National University)
  • 투고 : 2017.02.06
  • 심사 : 2018.04.10
  • 발행 : 2018.06.30

초록

본 연구에서는 몬순 기후지역에 위치한 대형 인공호(소양호)로 유입하는 유기탄소의 양의 시간적 변화와 호수로 유입 후의 침강하는 탄소의 양을 계산하였다. 또한 이렇게 침강한 유기물이 심층 혐기성 분해 후 발생하는 메탄의 양을 측정하였다. 조사 결과 몬순 강우의 영향으로 여름철 많은 양의 유기탄소가 유입수를 통해 호수로 유입하는 사실을 확인하였고, 침강하는 유기탄소 양 또한 상당함을 확인할 수 있었다. 또한 유기탄소의 순환 및 온실가스 방출연구에 중요한 부분인 메탄 방출량을 측정한 결과 그 양이 이미 조사된 다른 호수와 비교했을 때 더 많은 양의 탄소가 메탄의 형태로 배출됨을 알 수 있었다. 향후 온실가스 저장소(inventory) 대상 선정에 있어서도 인공호의 중요성을 무시할 수 없음을 확인했다. 그러나 호수의 메탄 발생량을 정량하기 위해 메탄 기포 발생의 산발적인 특성을 고려하고 시공간적 발생의 특징을 연구하는 것은 향후 필수적이다. 더욱이 현재 우리나라 호수를 대상으로 한 메탄가스 발생의 연구는 극히 드물기 때문에 더 많은 관심이 필요하다.

The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

키워드

참고문헌

  1. Baker, J. 2013. Algal Nutrient Limitation throughout the Little Bear River Watershed. Natural Resources and Environmental Issues 18(7): 54-60.
  2. Bastviken, D., J. Cole, M. Pace and L. Tranvik. 2004. Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments, and a Global Estimate. Global Biogeochemical Cycles 18(4): 1-12.
  3. Bastviken, D., A.L. Santoro, H. Marotta, L.Q. Pinho, D.F. Calheiros, P. Crill and A. Enrich-Prast. 2010. Methane Emissions from Pantanal, South America, during the Low Water Season: Toward More Comprehensive Sampling. Environmental Science & Technology 44(14): 5450-5455. https://doi.org/10.1021/es1005048
  4. Bastviken, D., L. Tranvik, J.A. Downing, P.M. Crill and A. Enrich-Prast. 2011. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 331(6013): 50. https://doi.org/10.1126/science.1196808
  5. Bonk, A., W. Tylmann, B. Amann, D. Enters and M. Grosjean. 2015. Modern Limnology and Varve-Formation Processes in Lake Zabinskie, Northeastern Poland: Comprehensive Process Studies as a Key to Understand the Sediment Record. Journal of Limnology 74(2): 358-370.
  6. Casper, P., S.C. Maberly, G.H. Hall and B.J. Finlay. 2000. Fluxes of Methane and Carbon Dioxide from a Small Productive Lake to the Atmosphere. Biogeochemistry 49(1): 1-19. https://doi.org/10.1023/A:1006269900174
  7. DelSontro, T., M.J. Kunz, T. Kempter, A. Wuest, B. Wehrli and D.B. Senn. 2011. Spatial Heterogeneity of Methane Ebullition in a Large Tropical Reservoir. Environmental Science & Technology 45(23): 9866-9873. https://doi.org/10.1021/es2005545
  8. DelSontro, T., D.F. McGinnis, S. Sobek, I. Ostrovsky and B. Wehrli. 2010. Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments. Environmental Science & Technology 44(7): 2419-2425. https://doi.org/10.1021/es9031369
  9. Duncan, I.J. 2015. Does Methane Pose Significant Health and Public Safety Hazards? - A Review. Environmental Geosciences 22(3): 85-96. https://doi.org/10.1306/eg.06191515005
  10. Encinas, F., J.F. Peeters and H. Hofmann. 2014. Importance of the Autumn Overturn and Anoxic Conditions in the Hypolimnion for the Annual Methane Emissions from a Temperate Lake. Environmental Science and Technology 48(13): 7297-7304. https://doi.org/10.1021/es4056164
  11. Fearnside, P.M. 2005. Do Hydroelectric Dams Mitigate Global Warming? The Case of Brazil's Curu?-Una Dam. Mitigation and Adaptation Strategies for Global Change 10(4): 675-691. https://doi.org/10.1007/s11027-005-7303-7
  12. Goldsmith, S.T., A.E. Carey, W.B. Lyons, S. Kao, T. Lee and J. Chen. 2008. Extreme Storm Events, Landscape Denudation, and Carbon Sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology 36(6): 483-486. https://doi.org/10.1130/G24624A.1
  13. Goto, N., K. Hisamatsu, C. Yoshimizu and S. Ban. 2016. Effectiveness of Preservatives and Poisons on Sediment Trap Material in Freshwater Environments. Limnology 17(1): 87-94. https://doi.org/10.1007/s10201-015-0467-2
  14. Hu, H. and G. Huang. 2014. Monitoring of Non-Point Source Pollutions from an Agriculture Watershed in South China. Water, 3828-3840. doi:10.3390/w6123828
  15. Huttunen, J.T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola and P.J. Martikainen. 2003. Fluxes of Methane, Carbon Dioxide and Nitrous Oxide in Boreal Lakes and Potential Anthropogenic Effects on the Aquatic Greenhouse Gas Emissions. Chemosphere 52(3): 609-621. https://doi.org/10.1016/S0045-6535(03)00243-1
  16. Huttunen, J.T., K.M. Lappalainen, E. Saarijarvi, T. Vaisanen and P.J. Martikainen. 2001. A Novel Sediment Gas Sampler and a Subsurface Gas Collector Used for Measurement of the Ebullition of Methane and Carbon Dioxide from a Eutrophied Lake. Science of the Total Environment 266(1-3): 153-158. https://doi.org/10.1016/S0048-9697(00)00749-X
  17. Jung, S., M. Shin, J. Kim, J. Eum, Y. Lee, J. Lee, Y. Choi, K. You, J. Owen and B. Kim. 2016. The Effects of Asian Summer Monsoon on Algal Blooms in Reservoirs. Inland Waters 6(3): 406-413. https://doi.org/10.1080/IW-6.3.967
  18. Kemenes, A., B.R. Forsberg and J.M. Melack. 2007. Methane Release below a Tropical Hydroelectric Dam. Geophysical Research Letters 34(12). Wiley Online Library.
  19. Kim, B., K. Choi, C. Kim, U.H. Lee and Y.H. Kim. 2000. Effects of the Summer Monsoon on the Distribution and Loading of Organic Carbon in a Deep Reservoir, Lake Soyang, Korea. Water Research 34(14): 3495-3504. https://doi.org/10.1016/S0043-1354(00)00104-4
  20. Kim, B. and S. Jung. 2007. Turbid Storm Runoffs in Lake Soyang and Their Environmental Effect. Korean Society of Environmental Engineers, Special Issue 29(11): 1185-1190.
  21. Kim, B., J. Park, G. Hwang, M. Jun and K. Choi. 2001. Eutrophication of Reservoirs in South Korea. Limnology 2(3): 223-229. https://doi.org/10.1007/s10201-001-8040-6
  22. Kim, K., B. Kim, K. Knorr, J. Eum, Y. Choi, S. Jung and S. Peiffer. 2016. Potential Effects of Sediment Processes on Water Quality of an Artificial Reservoir in the Asian Monsoon Region. Inland Waters 6(3): 423-435. https://doi.org/10.1080/IW-6.3.852
  23. Kunz, M.J., A. Wuest, B. Wehrli, J. Landert and D.B. Senn. 2011. Impact of a Large Tropical Reservoir on Riverine Transport of Sediment, Carbon, and Nutrients to Downstream Wetlands. Water Resources Research 47(12). Wiley Online Library.
  24. Lee, J., J. Kim, J.S. Owen, Y. Choi, K. Shin, S. Jung and B. Kim. 2013. Variation in Carbon and Nitrogen Stable Isotopes in POM and Zooplankton in a Deep Reservoir and Relationship to Hydrological Characteristics. Journal of Freshwater Ecology 28(1): 47-62. https://doi.org/10.1080/02705060.2012.689999
  25. Louis, V.L. St, C.A. Kelly, E. Duchemin, J.W.M. Rudd and D.M. Rosenberg. 2000. Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate Reservoirs Are Sources of Greenhouse Gases to the Atmosphere, and Their Surface Areas Have Increased to the Point Where They Should Be Included in Global Inventories of anthropogenic emissions of greenhouse gases. BioScience 50(9): 766-775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
  26. Maeck, A., H. Hofmann and A. Lorke. 2014. Pumping Methane out of Aquatic Sediments - Ebullition Forcing Mechanisms in an Impounded River. Biogeosciences 11(11): 2925-2938. https://doi.org/10.5194/bg-11-2925-2014
  27. Maeck, A., T. Delsontro, D.F. McGinnis, H. Fischer, S. Flury, M. Schmidt, P. Fietzek and A. Lorke. 2013. Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environmental Science and Technology 47(15): 8130-8137. https://doi.org/10.1021/es4003907
  28. Ostrovsky, I., D.F. McGinnis, L. Lapidus and W. Eckert. 2008. Quantifying Gas Ebullition with Echosounder: The Role of Methane Transport by Bubbles in a Medium-Sized Lake. Limnology and Oceanography Methods 6: 105-118. https://doi.org/10.4319/lom.2008.6.105
  29. Wehrli, B. 2011. Climate Science: Renewable but Not Carbon-Free. Nature Geoscience 4(9): 585-586. https://doi.org/10.1038/ngeo1226
  30. Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. 3rd edition. Academic Press, SanDiego (CA), USA.
  31. http://www.wamis.go.kr. (Water Management Information System) 2016.9.15 Accessed.
  32. http://www.google.com/earth. (google earth) 2016.10.14. Accessed