References
- S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361. https://doi.org/10.4153/CJM-1956-040-9
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
- S. S. Bedi and J. Ram, Jacobson radical of skew polynomial rings and skew group rings, Israel J. Math. 35 (1980), no. 4, 327-338. https://doi.org/10.1007/BF02760658
- H. Chen, O. Gurgun, S. Halicioglu, and A. Harmanci, Rings in which nilpotents belong to Jacobson radical, An. Stiint Univ. Al. I. Cuza Mat.(N.S), LXII (2016), 595-606.
- W. Chen, On linearly weak Armendariz rings, J. Pure Appl. Algebra 219 (2015), no. 4, 1122-1130. https://doi.org/10.1016/j.jpaa.2014.05.039
- N. Divinsky, Rings and Radicals, Mathematical Expositions No. 14, University of Toronto Press, Toronto, ON, 1965.
- E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
- K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
- K. R. Goodearl and R. B. Warfield, Jr., An introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
-
V. Gupta, Weakly
${\pi}$ -regular rings and group rings, Math. J. Okayama Univ. 19 (1976/77), no. 2, 123-127. - Y. Hirano, D. van Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel) 66 (1996), no. 5, 360-365. https://doi.org/10.1007/BF01781553
- C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
- C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878. https://doi.org/10.1080/00927870008827127
- C. Huh, S. H. Jang, C. O. Kim, and Y. Lee, Rings whose maximal one-sided ideals are two-sided, Bull. Korean Math. Soc. 39 (2002), no. 3, 411-422. https://doi.org/10.4134/BKMS.2002.39.3.411
- S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
- D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp. https://doi.org/10.1142/S0218196712500592
- C. O. Kim, H. K. Kim, and S. H. Jang, A study on quasi-duo rings, Bull. Korean Math. Soc. 36 (1999), no. 3, 579-588.
- A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 1-2, 9-21. https://doi.org/10.1080/00927878408822986
- J. Krempa, Logical connections between some open problems concerning nil rings, Fund. Math. 76 (1972), no. 2, 121-130. https://doi.org/10.4064/fm-76-2-121-130
- J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
- T. Y. Lam, Corner ring theory: a generalization of Peirce decompositions. I, in Algebras, rings and their representations, 153-182, World Sci. Publ., Hackensack, NJ, 2006.
- T. Y. Lam and A. S. Dugas, Quasi-duo rings and stable range descent, J. Pure Appl. Algebra 195 (2005), no. 3, 243-259. https://doi.org/10.1016/j.jpaa.2004.08.011
-
Y. Lee and C. Huh, A note on
${\pi}$ -regular rings, Kyungpook Math. J. 38 (1998), no. 1, 157-161. - Y. Lee, C. Huh, and H. K. Kim, Questions on 2-primal rings, Comm. Algebra 26 (1998), no. 2, 595-600. https://doi.org/10.1080/00927879808826150
- A. Leroy, J. Matczuk, and E. R. Puczylowski, Quasi-duo skew polynomial rings, J. Pure Appl. Algebra 212 (2008), no. 8, 1951-1959. https://doi.org/10.1016/j.jpaa.2008.01.002
- G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
- E. R. Puczylowski, Questions related to Koethe's nil ideal problem, in Algebra and its applications, 269-283, Contemp. Math., 419, Amer. Math. Soc., Providence, RI, 2006.
- E. R. Puczylowski and A. Smoktunowicz, A polynomial ring that is Jacobson radical and not nil, Israel J. Math. 124 (2001), 317-325. https://doi.org/10.1007/BF02772627
- L. H. Rowen, Ring Theory, student edition, Academic Press, Inc., Boston, MA, 1991.
- R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. https://doi.org/10.1007/BF01419573
- H.-P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), no. 1, 21-31. https://doi.org/10.1017/S0017089500030342