DOI QR코드

DOI QR Code

WHEN NILPOTENTS ARE CONTAINED IN JACOBSON RADICALS

  • Lee, Chang Ik (Department of Mathematics Pusan National University) ;
  • Park, Soo Yong (Department of Mathematics Pusan National University)
  • Received : 2017.10.01
  • Accepted : 2017.11.29
  • Published : 2018.09.01

Abstract

We focus our attention on a ring property that nilpotents are contained in the Jacobson radical. This property is satisfied by NI and left (right) quasi-duo rings. A ring is said to be NJ if it satisfies such property. We prove the following: (i) $K{\ddot{o}}the^{\prime}s$ conjecture holds if and only if the polynomial ring over an NI ring is NJ; (ii) If R is an NJ ring, then R is exchange if and only if it is clean; and (iii) A ring R is NJ if and only if so is every (one-sided) corner ring of R.

Keywords

References

  1. S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361. https://doi.org/10.4153/CJM-1956-040-9
  2. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  3. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  4. S. S. Bedi and J. Ram, Jacobson radical of skew polynomial rings and skew group rings, Israel J. Math. 35 (1980), no. 4, 327-338. https://doi.org/10.1007/BF02760658
  5. H. Chen, O. Gurgun, S. Halicioglu, and A. Harmanci, Rings in which nilpotents belong to Jacobson radical, An. Stiint Univ. Al. I. Cuza Mat.(N.S), LXII (2016), 595-606.
  6. W. Chen, On linearly weak Armendariz rings, J. Pure Appl. Algebra 219 (2015), no. 4, 1122-1130. https://doi.org/10.1016/j.jpaa.2014.05.039
  7. N. Divinsky, Rings and Radicals, Mathematical Expositions No. 14, University of Toronto Press, Toronto, ON, 1965.
  8. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  9. K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
  10. K. R. Goodearl and R. B. Warfield, Jr., An introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
  11. V. Gupta, Weakly ${\pi}$-regular rings and group rings, Math. J. Okayama Univ. 19 (1976/77), no. 2, 123-127.
  12. Y. Hirano, D. van Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel) 66 (1996), no. 5, 360-365. https://doi.org/10.1007/BF01781553
  13. C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
  14. C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878. https://doi.org/10.1080/00927870008827127
  15. C. Huh, S. H. Jang, C. O. Kim, and Y. Lee, Rings whose maximal one-sided ideals are two-sided, Bull. Korean Math. Soc. 39 (2002), no. 3, 411-422. https://doi.org/10.4134/BKMS.2002.39.3.411
  16. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  17. D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp. https://doi.org/10.1142/S0218196712500592
  18. C. O. Kim, H. K. Kim, and S. H. Jang, A study on quasi-duo rings, Bull. Korean Math. Soc. 36 (1999), no. 3, 579-588.
  19. A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 1-2, 9-21. https://doi.org/10.1080/00927878408822986
  20. J. Krempa, Logical connections between some open problems concerning nil rings, Fund. Math. 76 (1972), no. 2, 121-130. https://doi.org/10.4064/fm-76-2-121-130
  21. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
  22. T. Y. Lam, Corner ring theory: a generalization of Peirce decompositions. I, in Algebras, rings and their representations, 153-182, World Sci. Publ., Hackensack, NJ, 2006.
  23. T. Y. Lam and A. S. Dugas, Quasi-duo rings and stable range descent, J. Pure Appl. Algebra 195 (2005), no. 3, 243-259. https://doi.org/10.1016/j.jpaa.2004.08.011
  24. Y. Lee and C. Huh, A note on ${\pi}$-regular rings, Kyungpook Math. J. 38 (1998), no. 1, 157-161.
  25. Y. Lee, C. Huh, and H. K. Kim, Questions on 2-primal rings, Comm. Algebra 26 (1998), no. 2, 595-600. https://doi.org/10.1080/00927879808826150
  26. A. Leroy, J. Matczuk, and E. R. Puczylowski, Quasi-duo skew polynomial rings, J. Pure Appl. Algebra 212 (2008), no. 8, 1951-1959. https://doi.org/10.1016/j.jpaa.2008.01.002
  27. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  28. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
  29. E. R. Puczylowski, Questions related to Koethe's nil ideal problem, in Algebra and its applications, 269-283, Contemp. Math., 419, Amer. Math. Soc., Providence, RI, 2006.
  30. E. R. Puczylowski and A. Smoktunowicz, A polynomial ring that is Jacobson radical and not nil, Israel J. Math. 124 (2001), 317-325. https://doi.org/10.1007/BF02772627
  31. L. H. Rowen, Ring Theory, student edition, Academic Press, Inc., Boston, MA, 1991.
  32. R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. https://doi.org/10.1007/BF01419573
  33. H.-P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), no. 1, 21-31. https://doi.org/10.1017/S0017089500030342