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TOPOLOGICAL ENTROPY OF SWITCHED SYSTEMS

Yu Huang and Xingfu Zhong

Abstract. For a switched system with constraint on switching sequen-

ces, which is also called a subshift action, on a metric space not necessarily

compact, two kinds of topological entropies, average topological entropy
and maximal topological entropy, are introduced. Then we give some

properties of those topological entropies and estimate the bounds of them
for some special systems, such as subshift actions generated by finite

smooth maps on p-dimensional Riemannian manifold and by a family of

surjective endomorphisms on a compact metrizable group. In particular,
for linear switched systems on Rp, we obtain a better upper bound, by

joint spectral radius, which is sharper than that by Wang et al. in [42,43].

1. Introduction

A switched system consists of a family of subsystems and a rule that gov-
erns the switching among them. More precisely, let X be a metric space not
necessarily compact and G = {f1, . . . , fk} a family of continuous self-maps of
X, we consider the discrete-time dynamical system in the form of

(1) xn+1 = fωn
(xn),

where xn ∈ X, ωn takes a value in the finite-symbolic set I , {1, 2, . . . , k}. Let
N denote the non-negative integers. If we denote the set (also called symbolic
space) of all mappings N→ I by

IN = {ω : N→ I},

then switching can be classified into two situations: (i) arbitrary switching; i.e.,
the switching rule can be taken arbitrarily from IN; (ii) switching is subject to
certain constraints; i.e., the switching rule is characterized by a subset of IN.
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Switched systems are found in many practical systems, see [10] and [40].
When every element fi in G is a linear continuous map from a finite dimen-
sional linear space into itself, we call (1) a switched linear system. Many
control properties for switched linear systems, such as stability, stabilizability,
controllability, observability and so on, have been widely studied in the last
two decades. The books [10] and [40] contain many the basic theory, examples
and many results on switched linear systems.

For a topological dynamical system (X, f) where X is a compact topological
space and f is a continuous map from X into itself, Adler, Konheim and McAn-
drew [1] in 1965 introduced a quantity named topological entropy to measure
the complexity for the system. Late, Dinaburg [15] and Bowen [7] respectively
gave equivalent quantities when X is a metrizable space, which is known as
Bowen-metric entropy. Since this entropy is invariant under topological con-
jugacy, many researchers extended this notion to other kinds of systems, such
as non-autonomous dynamical systems, group and semigroup actions, folia-
tions, graphs and so on [18,21,27,31–34,36,44]. Similar to topological entropy,
measure theoretic entropy, which is first established by Kolmogorov [26] and
Sinai [39], is another important notion to character the complexity of measure-
preserving systems. Recently, there are also some works devoted to the measure
theoretic entropy for non-autonomous dynamical systems [9, 23,24,44].

Our aim is to study the topological entropy of the switched system (1). When
the switchings are arbitrary, one can take the switched system (1) as a free
semigroup action G generated by G, i.e., G =

⋃
n∈NG

n, Gn = {fωn−1
· · · fω0

|
ωi ∈ I, i = 1, . . . , n}. We remark that G0 = {idX}, where idX is the identity
map of X. In this situation, Bís [5] in 2004 introduced the notion of topological
entropy on the semigroup G in the case that the state space X is a compact
metric space, which we call the maximal entropy of the semigroup G. Earlier,
Bufetov in [8] gave another definition of topological entropy of G, which is called
the average entropy of G. Recently, Wang et al. in [42] and [43], respectively,
extend the notions of the maximal entropy and the average entropy of G to
the case that the state space X is not necessarily compact. We will consider
the maximal entropy and average entropy of the switched system (1) when the
switchings are subject to a subset Λ of IN that can be identified as a subshift
of the full shift (IN, σ), where σ is the classical shift operator on IN, that is, for
ω ∈ IN (σω)i = (ω)i+1 and σ(Λ) ⊂ Λ. Let us call such system a subshift action
on Λ. We remark that a proper subshift action has no semigroup structure. On
the other hand, one can also view in this context the system as a skew-product
transformation (or a cocycle) F : Λ×X → Λ×X which is defined by

(2) F (ω, x) = (σ(ω), fω0
(x)).

Thus, for the switched system (1), there are three kinds of different topological
entropies: the maximal entropy, average entropy and the classical topological
entropy of F .
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The switched system (1), in some sense, can be regarded as a random system.
Consider the following system:

xn+1 = fσnωx(n),

where (Λ,B, µ, σ) is a measurable dynamical system, σ : Λ → {1, 2, . . . , k} is
defined as σn(ω) = ωn and x(n) ∈ X. The solution of the above equation
can be written as xn = φ(n, x0, ω) (see [2, 25] for more details about random
dynamical systems). Entropies for random dynamical systems have been wildly
studied. We refer the readers to Mihailescu and Urbanski [35], Bogenschütz [6],
Dooley and Zhang [16], Huang [22], Gary [19].

In the present paper, we extend the notion of the maximal entropy and
average entropy defined by Wang et al. in [42] and [43] to a subshift action on
a metric space not necessarily compact. Then we give some properties of those
entropies, including the topological analogue of the famous Abramov-Rokhlin
formula and estimate the bounds of the entropies for some particular systems,
such as subshift actions on a Riemanian manifold and switched linear systems
with constraint. The results obtained extend the related results in [5], [8],
[42] and [43]. In particular, for switched linear systems, we get a lower and
upper bound of the maximal entropy via the joint spectral radius of G, which
is sharper than that obtained in [42]. It is well known that joint spectral radius
play an important role in stability for switched linear systems.

This paper is organized as follows. In Section 2, we give the definitions of
maximal entropy and average entropy of a subshift action on a metric space
not necessarily compact and the relationship among them. Then some basic
properties of the entropies are given in Section 3. In Section 4, we shall give
some estimates of the entropies for three kinds of particular systems, including a
subshift action on finite-dimensional Riemannian manifold, a subshift action on
a compact metrizable group and a linear subshift action on finite-dimensional
linear space, respectively. Finally in Section 5, we shall give an alternative
lower bound for linear subshift actions with periodic points and a sharper upper
bound, by joint spectral radius, for the full shift action on linear systems, which
is sharper than that by Wang et al. in [43] and [42].

2. Topological entropy of a switched system

Let us recall some notions on symbolic spaces. Following [30], any finite
set I with at least two elements is called an alphabet. And we write I =
{0, 1, . . . , k − 1}. For n ∈ N we denote by In the set of words of I of length
n, i.e., In = {u = (ω0 · · ·ωn−1) | ωi ∈ I, i = 0, . . . , n− 1}. Let I∗ = ∪n≥1In
be the set of all words of I. For two words u, v ∈ I∗, the concatenation of u
and v is defined as uv. The word u is called a subword of v (denoted by u v v)
if there exists words x, y such that xuy = v. Furthermore, if x is the empty
word, then u is called a prefix of v.

A full shift is any dynamical system (IN, σ), where IN = {x = (x0, x1, . . .) |
xn ∈ I, ∀n ≥ 0} is the symbol space endowed with the distance d1(x, y) =
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maxn{ 1
n+1 | xn 6= yn} and σ is the shift map defined by σ(x)i = xi+1. A

subshift is any subsystem of (IN, σ), i.e., a closed σ-invariant subset Λ ⊂ IN.
By language we mean a subset L ⊂ I∗. Let Λ be a closed subset of IN. The

language and pre-language of Λ are defined by L(Λ) = {u ∈ I∗ : ∃x ∈ Λ, u v x}
and L0(Λ) = {u ∈ I∗ : ∃x ∈ Λ, u is a prefix of x}, respectively. Note that
L(Λ) = L0(Λ) when Λ is a closed σ-invariant subset of IN. Thus a subshift
can be characterized by its language. We denote by Ln(Λ) = L0(Λ) ∩ In the
language of words of length n.

Let X be a metric space with metric d, which is not necessarily compact.
Consider a family of finite continuous self-maps G = {f0, f1, . . . , fk−1} of X.
Given a subshift (Λ, σΛ), we consider the switched system (1) under the switch-
ing sequences subjected to Λ. This system can be characterized by the subshift
action G = ∪nGn on X where Gn = {fω = fωn−1◦· · ·◦fω0 | ω = (ωn−1 · · ·ω0) ∈
Ln(Λ)}. For any n and ω ∈ Gn, we denote f−1

ω = (fwn−1 ◦ · · · ◦ fw0)−1. We
remark that the subshift G is not a free semigroup acting on X when Λ is a
proper subset of IN.

Now let us define two different entropies for the subshift G. For any n ∈ N
and any w ∈ Ln(Λ), define two dynamical metrics dn and dw on X, respectively
by

(3) dn(x, y) = max
0≤i<n

{d(g(x), g(y)) : g ∈ Gi},

and

(4) dw(x, y) = max
w′vw

d(fw′(x), fw′(y)).

Let K be a compact subset of X and ε > 0. A subset E of X is said to be
an (n, ε,K,Λ)-spanning set of K if for every x ∈ K, there exists y ∈ E such
that dn(x, y) ≤ ε. A subset F of K is called (n, ε,K,Λ)-separated set of K if
for any x, y ∈ F with x 6= y, dn(x, y) > ε. Let r(n, ε,K,Λ) and s(n, ε,K,Λ)
denote the smallest cardinality of any (n, ε,K,Λ)-spanning set of K and the
largest cardinality of any (n, ε,K,Λ)-separated set of K, respectively.

Likewise, for a compact subset K of X, w ∈ Ln(Λ) and ε > 0, we can define
the (w, ε,K,Λ)-spanning set and (w, ε,K,Λ)-separated set of K with respect to
the dynamical metric dw. The smallest cardinality of any (w, ε,K,Λ)-spanning
set of K and the largest cardinality of any (w, ε,K,Λ)-separated set of K
are denoted by Nspan(w, ε,K,Λ) and Nsep(w, ε,K,Λ), respectively. For every
n ∈ N, let

Nspan(n, ε,K,Λ) =
1

|Ln(Λ)|
∑

w∈Ln(Λ)

Nspan(w, ε,K,Λ),

Nsep(n, ε,K,Λ) =
1

|Ln(Λ)|
∑

w∈Ln(Λ)

Nsep(w, ε,K,Λ).



TOPOLOGICAL ENTROPY OF SWITCHED SYSTEMS 1161

It is easy to see that

r(n, ε,K,Λ) ≤ s(n, ε,K,Λ) ≤ r(n, ε
2
,K,Λ)

and

Nspan(n, ε,K,Λ) ≤ Nsep(n, ε,K,Λ) ≤ Nspan(n,
ε

2
,K,Λ).

Definition 2.1. Let X be a metric space with metric d and G be a subshift
generated by a finite numbers of continuous self-maps G = {f0, f1, . . . , fm−1}
on X and a subshift (Λ, σΛ). For a compact subset K of X, define

hM (K,Λ) = lim
ε→0

r(ε,K,Λ) = lim
ε→0

s(ε,K,Λ)

and

hA(K,Λ) = lim
ε→0

Nspan(ε,K,Λ) = lim
ε→0

Nsep(ε,K,Λ),

where

r(ε,K,Λ) = lim sup
n→∞

1

n
log r(n, ε,K,Λ),

s(ε,K,Λ) = lim sup
n→∞

1

n
log s(n, ε,K,Λ),

and

Nspan(ε,K,Λ) = lim sup
n→∞

1

n
logNspan(n, ε,K,Λ),

Nsep(ε,K,Λ) = lim sup
n→∞

1

n
logNsep(n, ε,K,Λ).

We call the quantity hM (G|Λ) defined by

hM (G|Λ) = sup{hM (K,Λ) : K ⊂ X is compact}
the maximal entropy of subshift action G on X and the quantity hA(G|Λ)
defined by

hA(G|Λ) = sup{hA(K,Λ) : K ⊂ X is compact}
the average entropy of subshift action G on X.

When Λ = IN, we write hM (G) = hM (G|Λ) and hA(G) = hA(G|Λ).

Remark 2.2. (1) If Λ = IN is the whole symbol space, then the definitions
of the maximal entropy and average entropy are the same as the topological
entropy defined by Wang et al. in [42], where G = {idX , f1, . . . , fm−1}, and [43],
respectively.

(2) It is easy to see that hM (G) ≥ hM (G|Λ) and hA(G) ≥ hA(G|Λ).

Remark 2.3. For any G = {f0, f1, . . . , fm−1}, a finite numbers of continuous
self-maps onX, and any subshift (Λ, σΛ), it is obvious that hA(G|Λ) ≤ hM (G|Λ).

Moreover, we have:

Proposition 2.4. There exists a system such that hA(G) = 0 < hM (G) = log 2.
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Proof. Let X = R and G = {f0, f1} with f0 = 0 the constant map and f1 = 2x.
We claim that

0 = hA(G) < hM (G).

It is clear that hM (G) > 0. In fact by Proposition 5.1, hM (G) = log 2 = h(f1).
So it suffices to show that hA(G) = 0. Let [a, b] ⊂ R be an interval. For any

ε > 0, n ≥ 1 and j = 0, 1, . . . , n, Ej = {a + iε(b−a)
2j , i = 0, 1, . . . , 2j

ε }. Then

|Ej | ≤ b 2j

ε c+1 ≤ 2j+1

ε , where b 2j

ε c denote the largest integer less than or equal

to 2j

ε . If |w| = n and w[0,j] =

j︷ ︸︸ ︷
1 · · · 10, then Nspan(w, ε, [a, b], IN) ≤ |Ej | ≤ 2j+1

ε .
So ∑

|w| = n,w[0,j] =

j︷ ︸︸ ︷
1 · · · 1 0

Nspan(w, ε, [a, b], IN) ≤ 2n−j+1 2j+1

ε
=

2n

ε
,

∑
|w|=n

Nspan(w, ε, [a, b], IN) ≤
n∑
j=0

∑
|w| = n,w[0,j] =

j︷ ︸︸ ︷
1 · · · 1 0

Nspan(w, ε, [a, b], IN) + 2n

≤
n∑
j=0

2n

ε
+ 2n =

(n+ 2)2n

ε
.

Therefore

Nspan(n, ε, [a, b], IN) =
1

2n

∑
|w|=n

Nspan(w, ε, [a, b], IN) ≤ n+ 2

ε
.

Thus

Nspan(ε, [a, b], IN) = 0

and

hA([a, b], IN) = 0,

which implies

hA(G) = 0. �

Remark 2.5. From the above proof, we also have hM (G|Λ) = log 2 for any Λ
with 1∞ ∈ Λ.

LetX = R, G1 = {2x, 1
4x} and G2 = {4x, 1

2x}. It is obvious that G2 generates
the same semigroup as G1. By Proposition 5.1, we know hM (G1) = log 2 and
hM (G2) = log 4. Suppose that G are generated by G1 and G2. It is interesting
to know the relation between hM (G1) and hM (G2).

Proposition 2.6. Let X be a metric space and G1 = {f0, f1, . . . , fm} and
G2 = {g0, g1, . . . , gn}, where fi and gk are continuous maps from X into itself,
i = 0, 1, . . . , n, k = 0, 1, . . . ,m. Suppose that G1 and G2 generate the same
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semigroup. If fi = gwi
for some wi ∈ {0, 1, . . . , n}li , for any i ∈ {0, 1, . . . ,m},

then
hM (G1) ≤ L1hM (G2),

where L1 is the lowest common multiple of {li}mi=0.

Proof. Let I1 = {0, 1, . . . , n} and I2 = {0, 1, . . . ,m}. For any compact set

K ⊂ X. It is clear that r(n, ε,K, I1
N) ≤ r(L1n, ε,K, I2

N) and r(n, ε,K, I2
N) ≤

r(L2n, ε,K, I1
N). It follows that

lim sup
n→∞

log r(n, ε,K, I1
N)

n
≤ lim sup

n→∞

log r(L1n, ε,K, I2
N)

n
,

lim sup
n→∞

log r(n, ε,K, I2
N)

n
≤ lim sup

n→∞

log r(L2n, ε,K, I1
N)

n
.

Hence

lim sup
n→∞

log r(n, ε,K, I1
N)

n
≤ L1 lim sup

n→∞

log r(n, ε,K, I2
N)

n
,

lim sup
n→∞

log r(n, ε,K, I2
N)

n
≤ L2 lim sup

n→∞

log r(n, ε,K, I1
N)

n
.

It completes the proof. �

Remark 2.7. Let G be the semigroup generate by G = {f0, . . . , fn}. If Ĝ
generates the same semigroup, then hM (G) > 0 is equivalent to hM (Ĝ) > 0.

Let G = {Ĝ : Ĝ is a generator of the semigroup}. Suppose G ⊂ Ĝ for any

Ĝ ∈ G . Then hM (G) = inf Ĝ hM (Ĝ).

The subshift action G can be also viewed as a skew-product transformation
(or a cocycle) F : Λ×X → Λ×X which is defined by

F (ω, x) = (σ(ω), fω0
(x)).

See (2). The relation between the classical topological entropy of F and the
average entropy of the subshift action G is stated as follows, which is the
topological analogue of the famous Abramov-Rokhlin formula.

Theorem 2.8. Let (X, d) be a metric space and G = {f0, f1, . . . , fm−1} be a
family of finite number continuous self-maps of X. Then the classical topolog-
ical entropy of the skew-product transformation F satisfies

hD(F ) = h(Λ, σ) + hA(G|Λ),

where the metric D on Λ×X is defined by

D((ω, x), (ω′, x′)) = max{d′(ω, ω′), d(x, x′)}.
Here h(Λ, σ) is the classical topological entropy of (Λ, σ), d and d′ are metrics
on Λ and X, respectively.

Remark 2.9. Recall that h(Λ, σ) = limn→∞ log |L
n(Λ)|
n . See e.g. [30, Proposi-

tion 3.24].
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For the proof of the theorem, we need the following two lemmas, which are
as analogous as those of Wang, Ma and Lin [43].

Lemma 2.10. For any compact subset E of X, n ≥ 1, 0 ≤ ε ≤ 1
2 , it holds that

Nsep(n, ε,Λ× E,F ) ≥
∑

w∈Ln(Λ)

Nsep(w, ε,E,Λ).

Proof. Let Ln(Λ) contain N distinct words, say, Ln(Λ) = {w1, . . . , wN}. For
every 1 ≤ i ≤ N , pick ω(i) ∈ Λ such that ω(i)|[0,n−1] = wi. It is clear that for

0 < ε < 1
2 , the subset {ω(i) : i = 1, . . . , N} is a (n, ε,Λ, σ)-separated set of Λ.

Let Ni = Nsep(w(i), ε, E,Λ) and {xi1, . . . , xiNi
} a (w(i), ε, E,Λ)-separated set

of Λ. Then the points

(ω(i), xij) ∈ Λ×X, i = 1, . . . , N, j = 1, . . . , Ni

form a (n, ε,Λ × E,F )-separated set of Λ × E. So Nsep(n, ε,Λ × E,F ) ≥∑
w∈Ln(Λ)Nsep(w, ε,E,Λ). �

Lemma 2.11. For any compact subset E of X, n ≥ 1 and ε > 0, there exists
a positive integer C(ε) such that

Nspan(n, ε,Λ× E,F ) ≤ |LC(ε)(Λ)|
∑

w∈Ln(Λ)

Nspan(w, ε,E,Λ).

Proof. Given ε > 0, pick C(ε) such that 1
C(ε)+1 < ε. Let N = |Ln+C(ε)(Λ)|,

then there are N distinct words of length n + C(ε) in Ln+C(ε), which are
denoted by w1, . . . , wN . For every 1 ≤ i ≤ N , choose ω(i) ∈ Λ satisfying
ω(i)|[0,n+C(ε)] = wi. It is clear that {ω(i) : i = 1, . . . , N} is a (n, ε, σ)-spanning

set of Λ. Let ω(i)|[0,n−1] = w′i, Bi = Nspan(wi, ε, E,Λ) and {xi1, . . . , xiBi
} be a

(wi, ε, E,Λ)-spanning set of E. Then the set

{(ω(i), xij) ∈ Λ×X, i = 1, . . . , N, j = 1, . . . , Bi}
is a (n, ε,Λ× E,F )-spanning set of Λ× E. Hence

Nspan(n, ε,Λ× E,F ) ≤ |LC(ε)(Λ)|
∑

w∈Ln(Λ)

Nspan(w, ε,E,Λ).
�

The proof of Theorem 2.8. By Lemma 2.10, for any compact subset E of
X, we have

Nsep(n, ε,Λ× E,F ) ≥ |Ln(Λ)|Nsep(n, ε, E,Λ).

It follows that

hD(F ) ≥ hD(Λ× E,F ) ≥ h(Λ, σ) + hA(E,Λ).

So
hD(F ) ≥ h(Λ, σ) + hA(G|Λ).

On the other hand, from Lemma 2.11, one has

Nspan(n, ε,Λ× E,F ) ≤ |LC(ε)(Λ)||Ln(Λ)|Nspan(n, ε, E,Λ).
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Hence

hD(Λ× E,F ) ≤ h(Λ, σ) + hA(E,Λ) ≤ h(Λ, σ) + hA(G|Λ).

Since any compact subset of Λ × X is a subset of Λ × E for some compact
subset of E ⊂ X, we have

hD(F ) = sup{hD(Λ× E,F ) : E is a compact subset of X}.
It follows that

hD(F ) ≤ h(Λ, σ) + hA(G|Λ). �

Remark 2.12. (1) If (X, d) is a compact metric space, Bufetov proved in [8]
that

hD(F ) = logm+ hA(G).

(2) If (X, d) is a metric space not necessarily compact, Wang et al. proved
in [43] that

hD(F ) = logm+ hA(G).

3. Basic properties of the entropies for subshift actions

In this section, we will give some basic properties of hM (G|Λ) and hA(G|Λ)
for a subshift action on a metric space X generated by G = {f0, f1, . . . , fm−1}
and a subshift Λ.

Recall that two metrics d and d′ on X are said to be uniformly equiva-
lent if both idX : (X, d) → (X, d′) and idX : (X, d′) → (X, d) are uniformly
continuous.

By the analogous methods as that in [42] and [43], we have the following
two theorems.

Theorem 3.1. Let (X, d) be a metric space and G = {f0, f1, . . . , fm−1} be a
family of finite number continuous self-maps of X. If d and d′ are uniformly
equivalent, then

hMd(G|Λ) = hMd′(G|Λ)

and

hAd(G|Λ) = hAd′(G|Λ).

Remark 3.2. If X is compact, then any two equivalent metrics are uniformly
equivalent. Therefore, the maximal entropy and average entropy of a subshift
action does not rely on the metric on X.

Theorem 3.3. Let (X, d) be a metric space and G = {f0, f1, . . . , fm−1} be a
family of finite number continuous self-maps of X. Let δ > 0. Then

hM (G|Λ) = sup{hM (K,Λ), diam(K) < δ}
and

hA(G|Λ) = sup{hA(K,Λ), diam(K) < δ}.

The product rule for the two kinds of topological entropies is given as follows.



1166 Y. HUANG AND X. ZHONG

Theorem 3.4. Let (Xi, di), i = 1, 2 be two metric spaces, F (1) = {f (1)
0 , . . .,

f
(1)
m−1} a set of finite continuous self-maps of X1 and F (2) = {f (2)

0 , . . . , f
(2)
k−1}

a set of finite continuous self-maps of X2. Define F (1) × F (2) = {fi × gj : i ∈
{0, . . . ,m−1}, j ∈ {0, . . . , k−1}}, where (fi×gj)(x1, x2) = (fi(x1), gj(x2)) for
every x1 ∈ X1, x2 ∈ X2. A metric d on X1×X2 is defined by d((x1, x2), (y1, y2))
= max{d1(x1, y1), d2(x2, y2)}. Given two subshifts Λi, i = 1, 2. Then

hMd(F1 ×F2|Λ1×Λ2
) ≤ hMd1(F1|Λ1

) + hMd2(F2|Λ2
)

and

hAd(F1 ×F2|Λ1×Λ2) ≤ hAd1(F1|Λ1) + hAd2(F2|Λ2).

Moreover, if Xi is compact and hMdi(Λi) = limε→0 lim infn→∞
1
ns(n, ε,Xi,Λi)

(hAdi(Λi) = limε→0 lim infn→∞
1
nNsep(n, ε,Xi,Λi) respectively) for i = 1 or

i = 2, then

hMd(F1 ×F2|Λ1×Λ2
) = hMd1(F1|Λ1

) + hMd2(F2|Λ2
)

and

hAd(F1 ×F2|Λ1×Λ2
) = hAd1(F1|Λ1

) + hAd2(F2|Λ2
).

Proof. First, we will show that Λ1 × Λ2 can be regard as a subshift. Let
A = {(i, j), i ∈ {0, . . . ,m−1}, j ∈ {0, . . . , k−1}} and ΛA be the full shift on A.
Put Λ = {x ∈ ΛA : x1

[n,n+1] ∈ L
2(Λ1) and x2

[n,n+1] ∈ L
2(Λ2) for all n}, where

x1
[n,n+1] and x2

[n,n+1] denote the first and second components, respectively, of

x[n,n+1]. That is (i1 j2)(i2 j2) ∈ L2(Λ) if and only if i1i2 ∈ Λ1, j1j2 ∈ Λ2. It is
easy to check that (Λ1 × Λ2, σ1 × σ2) and (Λ, σ) are conjugate each other.

Let ν = ν0 · · · νn−1 ∈ Ln(Λ1 × Λ2), µ(i) = µ
(i)
0 · · ·µ

(i)
n−1 ∈ Ln(Λi), i = 1, 2.

It is clear that, by the proof of [43, Theorem 3.8], the map ν = µ(1) × µ(2) →
(µ(1), µ(2)) is a one to one correspondence.

The rest of the proof follows the proofs of [42, Theorem 3.11] and [43, The-
orem 3.8]. �

Finally in this section, we describe an appropriate version of topological
conjugacy, which preserves the entropies of a subshift action.

Theorem 3.5. Let (X, d) and (X, d) be metric spaces and π : X → X a
continuous surjection such that there is δ > 0 with

π|Bd(x,δ) : Bd(x, δ)→ Bd(π(x), δ)

being an isometric surjection for all x ∈ X. If G = {f0, f1, . . . , fm−1} are
uniformly continuous transformations on X, and G = {f0, f1, . . . , fm−1} are

uniformly continuous transformations on X satisfying πfi = f iπ for any 0 ≤
i ≤ m− 1, then

hMd(G|Λ) = hMd(G|Λ)

and

hAd(G|Λ) = hAd(G|Λ).
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Proof. The proof is similar to the proof of [42, Theorem 4.4] and is omitted. �

4. Estimates of the entropies

In this section, by the methods used in [42] and [43], we will give some
estimates of the topological entropies defined in Section 2 for three kinds of
particular systems. First, we shall obtain an upper bound for the entropies
of a subshift action generated by a family of differentiable maps on a finite-
dimensional Riemannian manifold.

Theorem 4.1. Let M ′ be a p-dimensional Riemannian manifold and G =
{f0, f1, . . . , fk−1} be a family of C1 maps on M ′. Then

hMd(G|Λ) ≤ max{0, p log( max
0≤i≤k−1

sup
x∈M ′

‖dxfi‖)}

and

hAd(G|Λ) ≤ lim sup
n→∞

1

n
log(

∑
w∈Ln(Λ)

(

n∏
i=1

max{1, sup
x∈M
‖dxfwi

‖})p)− h(Λ, σ),

where d denotes the metric on M ′ induced by the Riemannian metric.

Next result gives the entropies of a subshift action generated by a family of
surjective endomorphisms on a compact metrizable group.

Theorem 4.2. Let X be a compact metrizable group, A = {A0, . . . , Am−1} sur-
jective endomorphisms of X, a0, . . . , am−1 ∈ X. Denote by µ the Haar measure
on X and by d a left-invariant metric on X. Let A = {a0·A0, . . . , am−1·Am−1}.
Then

hM (A|Λ) = hM (A|Λ),

hM (A|Λ) = lim
ε→0

lim sup
n→∞

[− 1

n
logµ(Dn(e, ε,Λ))]

and

hA(A|Λ) = hA(A|Λ),

hA(A|Λ) = lim
ε→0

lim sup
n→∞

[
1

n
log(

1

|Ln(Λ)|
∑

w∈Ln(Λ)

1

µ(Dw(e, ε,Λ))
)],

where

Dn(e, ε,Λ) = ∩w′vw,w∈Ln(Λ)A
−1
w′ (Bd(e, ε)),

Dw(e, ε,Λ) = ∩w′vwA−1
w′ (Bd(e, ε)),

and e is the identity element of X and Bd(e, ε) is the open ball with center e
and radius ε.

Finally, we shall give the entropies of a linear subshift action on Rp, which
plays a key in next section.
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Lemma 4.3. Let A = {A0, . . . , Am−1} be the linear transformations on Rp, µ
the Lebesgue measure on Rp and ρ a metric on Rp defined by a norm. Then

hMρ(A|Λ) = lim
ε→0

lim sup
n→∞

[− 1

n
logµ(Dn(0, ε,Λ))]

and

hAρ(A|Λ) = lim
ε→0

lim sup
n→∞

[
1

n
log(

1

|Ln(Λ)|
∑

w∈Ln(Λ)

1

µ(Dw(0, ε,Λ))
)],

where

Dn(0, ε,Λ) = ∩w′vw,w∈Ln(Λ)A
−1
w′ Bd(0, ε),

Dw(0, ε,Λ) = ∩w′vwA−1
w′ Bd(0, ε),

and

Bρ(0, ε) = {x ∈ Rp : ρ(x, 0) < ε}.
hMρ(Λ) and hAρ(Λ) do not depend on the norm chosen.

Proof. Since all norms on Rp are equivalent, they induce uniformly equivalent
metrics on Rp. So by Theorem 3.1, we have hMρ(A|Λ) = hMd(A|Λ), where d
is the Euclidean distance of Rp. It is also clear that the expression given in
the theorem is independent of the norm. Hence we suppose ρ is the Euclidean
distance.

The rest of the proof follows the proofs of [42, Lemma 4.5] and [43, Lemma
5.5] and is omitted. �

5. Maximal entropy for linear switched systems

In this section we estimate the entropies of some linear subshift actions,
including subshift with periodic points and finite subshift, on Euclidean spaces.

Recall Theorem 4.6 of [42], which gives a lower and upper bounds of maximal
entropy for a full shift action.

Proposition 5.1 ([42, Theorem 4.6]). Let G be a semigroup generated by
A = {idRd , A1, . . . , Ak} which is a set of linear transformations on Rd. If all
the eigenvalues of Ai are of modulus great than or equal to 1 for each 1 ≤ i ≤ k,
then

(5) max
1≤i≤k

d∑
j=1

log |λ(i)
j | ≤ hMρ(A) ≤ d max

1≤i≤k
log λ̂i,

where λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
d are the eigenvalues of Ai, 1 ≤ i ≤ k, counted with their

multiplicities, and λ̂i is the biggest eigenvalue of
√
AiATi , 1 ≤ i ≤ k.

Particularly in the case d = 1 and X = R1, we have

hMρ(A) = max
1≤i≤k

log |λ(i)
1 |,

where λ
(i)
1 is the proportionality constant of Ai : R→ R : x 7→ λ

(i)
1 x, 1 ≤ i ≤ k.
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The bound of hMρ(A) obtained by the proposition above is too conservative.
We will give a sharper bound of the entropy without the condition that all the
eigenvalues of Ai are of modulus great than or equal to 1 for each 1 ≤ i ≤ k.
First, for the lower bound, we have:

Theorem 5.2. Let A = {A1, . . . , Ak} be a set of linear transformations on Rd
and Λ be a subshift. If Gl = {Aω[0,l)

, ω ∈ Perl(Λ)} 6= φ, then

(6) hMρ(A|Λ) ≥ sup
l≥k

max
A∈Gl

1

l

∑
{i||λA

i |>1}

log |λAi |,

where k = min{l : Perl(Λ) 6= ∅}, Perl(Λ) = {x : σl(x) = x, x ∈ Λ} and
λA1 , . . . , λ

A
d are the eigenvalues of A. (Some of λAi can be equal.)

Proof. It is sufficient to show that for any l ≥ k and any A∗ ∈ Gl it holds

(7) hMρ(A|Λ) ≥ 1

l

∑
{i||λA∗

i |>1}

log |λA∗i |.

By Lemma 4.3, we have

hMρ(A|Λ) = lim
ε→0

lim sup
n→∞

[
− 1

n
logm(Dn(0, ε,G))

]
≥ lim
ε→0

lim sup
n→∞

[
− 1

nl
logm(Dnl(0, ε,G))

]
,

where

Dnl(0, ε,G) =
⋂

A∈Gnl

A−1Bρ(0, ε).

Since

Dnl(0, ε,G) ⊂
n−1⋂
i=0

A−i∗ Bρ(0, ε) , D
∗
n(0, ε, A∗),

we further have

hMρ(A|Λ) ≥ 1

l
lim
ε→0

lim sup
n→∞

[
− 1

n
logm(D∗n(0, ε, A∗))

]
=

1

l

∑
{i||λA∗

i |>1}

log |λA∗i |.

The last equality comes from Lemma 8.13 and Theorem 8.14 in [41]. So the
inequality (7) holds and the proof is completed. �

We have several remarks on Theorem 5.2.

Remark 5.3. Roughly speaking, the topological entropy of a switched system is
bounded below by the topological entropy of any periodic switching sequence.
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Remark 5.4. When all the eigenvalues of Ai are of modulus great than or equal
to 1 for each 1 ≤ i ≤ k, it is obvious that

max
1≤i≤k

d∑
j=1

log |λ(i)
j | = sup

l≥1
max
A∈Gl

1

l

∑
{i||λA

i |>1}

log |λAi |.

Remark 5.5. If A = {id, A}, then it is well known that

hMρ(A) =
∑

{i||λi|>1}

log |λi|,

see e.g. Theorem 8.14 in [41]. So the lower bound is sharp and cannot be
improved.

Next, we give a new lower and upper bound for hMρ(A) by the joint spectral
radius of A. Recall that the joint spectral radius of A, due to Rota and Strang
[37], is defined by

ρ̂(A) = lim sup
n→∞

max
(i1,...,in)∈In

‖Ain · · ·Ai1‖
1
n ,

where we denote

In =

n times︷ ︸︸ ︷
I × · · · × I.

It is easy to see that ρ̂(A) can be rewritten as

(8) ρ̂(A) = lim
n→∞

max
(i1,...,in)∈In

‖Ain · · ·Ai1‖
1
n = inf

n≥1
max

(i1,...,in)∈In
‖Ain · · ·Ai1‖

1
n ,

by the subadditivity of the function n→ log max(i1,...,in)∈In ‖Ain · · ·Ai1‖. It is
well known that all infinite products of the matrices in A converge to zero if and
only if ρ̂(A) < 1 (e.g. see Barabanov [3]; Shih, Wu, & Pang [38]). Moreover, the
quantity ρ̂(A) is independent of the matrix norm ‖ · ‖ used here, and according
to Berger and Wang [4] and Elsner [17], ρ̂(A) is equal to the generalized spectral
radius ρ(A) of A, which was firstly introduced by Daubechies and Lagarias [14],
given by

ρ(A) = sup
n≥1

max
(i1,...,in)∈In

ρ(Ain · · ·Ai1)1/n

or equivalently

ρ(A) = lim sup
n→∞

max
(i1,...,in)∈In

ρ(Ain · · ·Ai1)1/n.

Here, the spectral radius of a single matrix A ∈ Rd×d is defined by

ρ(A) = max{|λ| | λ is an eigenvalue of A}.
Though the computation of ρ(A) in a closed formula form is generally impos-
sible, there are some approximate computation method to evaluate it. Fur-
thermore, several different techniques have been developed for computing the
exact value of ρ(A) for some particular kinds of A. See [12, 13, 29] and ref-
erences therein. Recently Dai generalized in [11] the Berger-Wang formula to



TOPOLOGICAL ENTROPY OF SWITCHED SYSTEMS 1171

a matrix multiplicative semigroup A = {A0, . . . , Am−1} restricted to a subset
that need not carry the algebraic structure of A, by ergodic theory; and later
Kozyak ([28]) extended this concept to product of matrices on the sliding block
relative frequencies of occurrences of different factors. For a subshift Λ. We
write

ρ̂n = max
w∈Ln(Λ)

‖Aw‖.

According to [11], the joint spectral radius of A restricted on Λ is defined by

ρ̂(A|Λ) = lim sup
n→∞

n
√
ρ̂n.

Theorem 5.6. Let V be a p-dimensional vector space, ρ a metric on V induced
by a norm on V , A = {A0, . . . , Am−1} the linear transformations on V . If for
every i ∈ {0, . . . ,m − 1}, all eigenvalues of Ai are of modulus greater than or
equal to 1, then

lim sup
n→∞

1

n
max

w∈∪n
i=0Ln(Λ)

{
|w|∑
i=0

p∑
j=1

log |λ(wi)
j |} ≤ hMρ(A|Λ) ≤ max{0, p log ρ̂(A|Λ)},

where λ
(i)
1 , . . . , λ

(i)
p are eigenvalues of Ai, 0 ≤ i ≤ m − 1, counted with their

multiplicities.

Proof. Without loss of generality, we can suppose V = Rp. Let µ be the
Lebesgue measure of Rp. Since all norms on Rp are equivalent they induce
uniformly equivalent metrics on Rp and by Theorem 3.1, we have hMρ(A|Λ) =
hMd(A|Λ) where d is the Euclidean distance.

By Lemma 4.3, one has

hMρ(A|Λ) = lim
ε→0

lim sup
n→∞

[− 1

n
logµ(Dn(0, ε,Λ))].

For any 0 ≤ i ≤ m− 1, we have µ(Ai(B)) = |detAi|µ(B) for any B ∈ B(Rp).
Choose w(n) ∈ ∪ni=0Li(Λ) such that

|w(n)|∑
i=0

p∑
j=1

log |λ(w
(n)
i )

j | = max
w∈∪n

i=0Li(Λ)
{
|w|∑
i=0

p∑
j=1

log |λ(wi)
j |}.

So

µ(Dn(0, ε,Λ)) ≤ µ(A−1
w(n)Bρ(0, ε))

= |det(A−1
w(n))| · µ(Bρ(0, ε))

=
1∏|w(n)|

i=0

∏p
j=1 |λ

(w
(n)
i )

j |
· µ(Bρ(0, ε)).

Thus

− 1

n
logµ(Dn(0, ε,Λ)) ≥ 1

n

|w(n)|∑
i=0

p∑
j=1

log |λ(w
(n)
i )

j | − 1

n
logµ(Bρ(0, ε)).
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It follows that

hMρ(A|Λ) ≥ lim sup
n→∞

1

n

|w(n)|∑
i=0

p∑
j=1

log |λ(w
(n)
i )

j |

= lim sup
n→∞

1

n
max

w∈∪n
i=0Li(Λ)

{
|w|∑
i=0

p∑
j=1

log |λ(wi)
j |}.

The proof for the right inequality includes two steps. Step1, if ρ̂(A|Λ) < 1,
then there exists N > 0 such that ρ̂n < 1 for every n ≥ N . That is ‖Aw‖ < 1 for
any w ∈ Ln(Λ), n ≥ N . For any compact subset K of Rd, it is easy to see that
if E is a (N, ε,K,Λ)-spanning set of K, then E is also a (n, ε,K,Λ)-spanning
set of K for any n ≥ N , which implies that hM (A|Λ) = 0.

Step2, if ρ , ρ̂(A|Λ) ≥ 1, then for any δ > 0, there exists N > 0 such that
‖Aw‖ ≤ (ρ+ δ)n for any n ≥ N and w ∈ Ln(Λ). We have, for any n ≥ N , that

Bρ(0,
1

ρn
ε) ⊂ (Aw)−1Bρ(0, ε),

where

ρn = max{ max
w∈∪N

i=0Li(Λ)
‖Aw‖, (ρ+ δ)n}.

Since (ρ+ δ)n →∞ as n→∞. We can suppose that

ρn = (ρ+ δ)n > 1,

when we take n ∈ N enough large.
So

Bρ(0,
1

ρn
ε) ⊂ Dn(0, ε,Λ) = ∩w∈∪n

i=0Li(Λ)(Aw)−1Bρ(0, ε).

Thus

− 1

n
logµ(Dn(0, ε,Λ)) ≤ 1

n
p · log ρn −

1

n
logµ(B(0, ε)).

Hence

hMρ(A|Λ) ≤ lim sup
n→∞

1

n
p log ρn

= lim sup
n→∞

1

n
p log(ρ+ δ)n

= p log(ρ+ δ).

Let δ → 0, we have

hMρ(A|Λ) ≤ p log ρ = p log ρ̂(A|Λ). �

Remark 5.7. From the above proof, we see that the upper bound by joint
spectral radius works, no matter whether the eigenvalues of Ai are of modulus
greater than or equal to 1 or not.
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Corollary 5.8. Under the assumptions of Proposition 5.1, we have

hMρ(A) ≤ d log ρ̂(A),

where ρ̂(A) is the joint spectral radius of A.

Remark 5.9. If we take the matrix norm ‖ · ‖ induced by the Euclidean norm

in Rd, then ‖A‖ ≤ λA, where λA is the largest eigenvalue of
√
AAT . Thus by

the definition of ρ̂(A), we have

ρ̂(A) ≤ max
A∈A

λA.

The following example illustrates the upper bound of hMρ(A) obtained by the
above theorem is strictly less than that in Proposition 5.1.

Example 5.10. Let A = {id, A1, A2} with

A1 =
5

4

(
1 1
0 1

)
and A2 =

(
1 0
1 1

)
.

Then max{λA1
, λA2

} = 5
4

√
3+
√

5
2 . It follows from [20, Example 1, p. 63] that

ρ̂(A) = 5
4 (1 + 1√

5
). So ρ̂(A) < maxA∈A λA. In fact, from Proposition 5.1 and

Theorem 5.2 we obtain

2 log
5

4
≤ hMρ(A) ≤ 2 log

5 +
√

5

4
.

Acknowledgment. The authors are grateful to the referees and Adminis-
tration Editorial Committee for their valuable comments which have led to
improvement of the paper. A part of this work was done when the second au-
thor was visiting University of Western Ontario. He would like to thank Prof.
Xingfu Zou and Western University for their hospitality during his visit.

References

[1] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer.
Math. Soc. 114 (1965), 309–319.

[2] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Spring-

er-Verlag, Berlin, 1998.
[3] N. E. Barabanov, On Lyapunov indicators of discrete inclusions I, Automat. Remote

Control 49 (1988), no. 2, 152–157; translated from Avtomat. i Telemekh. 1988 (1988),

no. 2, 40–46.
[4] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166

(1992), 21–27.

[5] A. Bís, Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst. 11 (2004), no. 2-3,
639–648.

[6] T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical
systems, Random & Computational Dynamics 1 (1992), 99–116.

[7] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer.

Math. Soc. 153 (1971), 401–414.

[8] A. Bufetov, Topological entropy of free semigroup actions and skew-product transfor-
mations, J. Dynam. Control Systems 5 (1999), no. 1, 137–143.



1174 Y. HUANG AND X. ZHONG

[9] J. S. Cánovas, On entropy of non-autonomous discrete systems, in Progress and chal-

lenges in dynamical systems, 143–159, Springer Proc. Math. Stat., 54, Springer, Heidel-

berg, 2013.
[10] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time markov jump linear

systems, Automatic Control IEEE Transactions 51 (2006), no. 5, 916–917.
[11] X. Dai, A Gel’fand-type spectral-radius formula and stability of linear constrained

switching systems, Linear Algebra Appl. 436 (2012), no. 5, 1099–1113.

[12] , Some criteria for spectral finiteness of a finite subset of the real matrix space
Rd×d, Linear Algebra Appl. 438 (2013), no. 6, 2717–2727.

[13] X. Dai, Y. Huang, J. Liu, and M. Xiao, The finite-step realizability of the joint spectral

radius of a pair of d × d matrices one of which being rank-one, Linear Algebra Appl.
437 (2012), no. 7, 1548–1561.

[14] I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge,

Linear Algebra Appl. 161 (1992), 227–263.
[15] E. I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl.

Akad. Nauk SSSR 190 (1970), 19–22.

[16] A. H. Dooley and G. Zhang, Local entropy theory of a random dynamical system, Mem.
Amer. Math. Soc. 233 (2015), no. 1099, vi+106 pp.

[17] L. Elsner, The generalized spectral-radius theorem: an analytic-geometric proof, Linear
Algebra Appl. 220 (1995), 151–159.

[18] S. Friedland, Entropy of graphs, semigroups and groups, in Ergodic theory of Zd actions
(Warwick, 1993–1994), 319–343, London Math. Soc. Lecture Note Ser., 228, Cambridge

Univ. Press, Cambridge, 1996.

[19] G. Froyland and O. Stancevic, Metastability, Lyapunov exponents, escape rates, and
topological entropy in random dynamical systems, Stoch. Dyn. 13 (2013), no. 4, 1350004,

26 pp.

[20] N. Guglielmi and V. Protasov, Exact computation of joint spectral characteristics of
linear operators, Found. Comput. Math. 13 (2013), no. 1, 37–97.

[21] K. H. Hofmann and L. N. Stojanov, Topological entropy of group and semigroup actions,

Adv. Math. 115 (1995), no. 1, 54–98.
[22] W. Huang, Entropy, chaos and weak horseshoe for infinite dimensional random dynam-

ical systems, Mathematics, 2015.

[23] C. Kawan, Metric entropy of nonautonomous dynamical systems, Nonauton. Dyn. Syst.
1 (2014), 26–52.

[24] C. Kawan and Y. Latushkin, Some results on the entropy of non-autonomous dynamical
systems, Dyn. Syst. 31 (2016), no. 3, 251–279.

[25] Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Sta-
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