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STABILITY OF WEAK MEASURE EXPANSIVE

DIFFEOMORPHISMS

Jiweon Ahn and Soyean Kim

Abstract. A notion of measure expansivity for homeomorphisms was

introduced by Morales recently as a generalization of expansivity, and he
obtained many interesting dynamic results of measure expansive homeo-

morphisms in [8]. In this paper, we introduce a concept of weak measure
expansivity for homeomorphisms which is really weaker than that of mea-

sure expansivity, and show that a diffeomorphism f on a compact smooth

manifold is C1-stably weak measure expansive if and only if it is Ω-stable.
Moreover we show that C1-generically, if f is weak measure expansive,

then f satisfies both Axiom A and the no cycle condition.

1. Introduction

The notion of expansivity for a homeomorphism on a compact metric space
introduced by Utz [12] plays an important role in the qualitative study of dy-
namical systems. The phenomenon of expansivity occurs when the orbits of
nearby points are separated by the dynamical system. Recently Morales [8]
introduced a notion of measure expansivity, generalizing the usual concept of
expansivity. Several interesting properties of measure expansivity have been
obtained elsewhere [2, 8–10]. In particular, Artigue and Carrasco-Olivera [2]
characterized the homemorphisms for which all probability measures are ex-
pansive as those which are countably-expansive.

In this paper we introduce a notion of weak measure expansivity for homeo-
morphisms which is really weaker than that of measure expansivity, and study
the stability of weak measure expansive diffeomorphisms on a compact C∞-
manifold.

Let X be a compact metric space with a metric d, and let f be a homeo-
morphism from X to X. A homeomorphism f : X → X is called expansive if
there is δ > 0 such that for any distinct points x, y ∈ X there exists i ∈ Z such
that d(f i(x), f i(y)) > δ. Given x ∈ X and δ > 0, we define the dynamic δ-ball
of f at x,
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Γfδ (x) = {y ∈ X : d(f i(x), f i(y)) ≤ δ for all i ∈ Z}.
(Denote Γδ(x) by Γfδ (x) for simplicity if there is no confusion.) Then we can
see that f is expansive if there is δ > 0 such that Γδ(x) = {x} for all x ∈ X.

Let β be the Borel σ-algebra on X. Denote by M(X) the set of Borel
probability measures on X endowed with weak∗ topology. We say that µ ∈
M(X) is atomic if there exists a point x ∈ X such that µ({x}) > 0. Let
M∗(X) be the set of nonatomic measures µ ∈M(X) and letM∗f (X) be the set

of f -invariant measures µ ∈ M∗(X). For any µ ∈ M∗(X), a homeomorphism
f : X → X is said to be µ-expansive (or µ is expansive with respect to f)
if there is δ > 0 such that µ(Γδ(x)) = 0 for all x ∈ X. Here δ is called an
expansive constant of µ with respect to f . Note that

Γδ(x) = ∩i∈Zf−i(Bδ[f i(x)]),

where Bδ[x] denotes the closed δ-ball centered at x. A homeomorphism f :
X → X is said to be measure expansive if f is µ-expansive for all µ ∈M∗(X).

Above all, we prepare and check some preliminaries of weak measure expan-
sivity on a compact metric space X in Section 2. Because it is the first paper
which introduce the weak measure expansivity for homeomorphisms, it is mean-
ingful that including fundamentals of weak measure expansivity. Subsequently,
we characterize the hyperbolicity of the nonwandering sets of diffeomorphisms
using the notion of weak measure expansivity in Section 3.

2. Preliminaries of weak measure expansivity

In this section, we introduce a concept of weak measure expansivity gen-
eralizing the notion of measure expansivity which is based on the concept of
measure-sensitive partition in [7]. To do this, we say that a finite collection
P = {A1, A2, . . . , An} of subsets of X is a finite δ-partition (δ > 0) of X if

(i) Ai’s are disjoint, and ∪ni=1Ai = X;
(ii) each Ai is measurable, int(Ai) 6= ∅ and diamAi ≤ δ for all i =

1, 2, . . . , n.

It can be easily checked that for any δ > 0 there is a finite δ-partition P =
{A1, A2, . . . , An} of X. In fact, let O = {Bδ(x) : x ∈ X} be an open cover of X,
where Bδ(x) is the open δ-ball centered at x. Then there are x1, x2, . . . , xn ∈ X
such that X = ∪ni=1Bδ(xi). Put Ui = Bδ(xi). Then we can make a finite δ-

partition {Ai}ni=1 of X by letting Ai = Ui \
(
∪i−1
j=1Uj

)
for each i = 1, 2, . . . , n.

For convenience, let’s skip “δ” and we say that P is a finite partition of X.
Because if a finite partition P exists such that µ(ΓP(x)) = 0 for all x ∈ X, then
we can take δ = diam(X) to get diam(Ai) ≤ δ for every Ai ∈ P. Hence P is
a finite δ-partition of X. However, if exact constants are needed, we will use
“δ > 0” and so on.

Now we introduce the notion of weak measure expansivity by using a finite
partition as follow.
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Definition. For some µ ∈M(X), a homeomorphism f : X → X is said to be
weak µ-expansive if there is a finite partition P = {A1, A2, . . . , An} of X such

that µ(ΓfP(x)) = 0 for all x ∈ X, where

ΓfP(x) = {y ∈ X : f i(y) ∈ P(f i(x)) for all i ∈ Z}.
The set ΓfP(x) is called the dynamic P-ball of f centered at x ∈ X, and P(x)

denotes the element of P containing x. Denote ΓP(x) by ΓfP(x) for simplicity
if there is no confusion. Note that

ΓP(x) = ∩i∈Zf−i(P(f i(x))).

A homeomorphism f : X → X is called weak measure expansive if it is weak
µ-expansive for all µ ∈M∗(X).

Note that if a homeomorphism f : X → X is weak µ-expansive for µ ∈
M(X), then µ is clearly nonatomic. In fact, if a homeomorphism f is weak
µ-expansive, then there exists a finite partition P of X such that µ(ΓP(x)) = 0
for all x ∈ X. Since {x} ⊂ ΓP(x) and µ({x}) ≤ µ(ΓP(x)), we have µ({x}) = 0.
This means that µ is nonatomic.

From now, we give basic properties of weak measure expansivity for home-
omorphisms on a compact metric space X. As we can see in the following
theorem (Theorem 2.2) and example (Example 2.3), the concept of the weak
measure expansivity is really weaker than that of the measure expansivity.

Theorem 2.1. For any µ ∈M∗(X), a homeomorphism f is weak µ-expansive
if and only if there exists a finite partition P = {A1, A2, . . . , An} of X such
that µ(ΓP(x)) = 0 for a.e. x ∈ X.

Proof. To prove this theorem, it is enough to show the “if part”. By the
assumption, there is a finite partition P = {A1, A2, . . . , An} of X such that
µ(ΓP(x)) = 0 for a.e. x ∈ X. Let Y = {x ∈ X : µ(ΓP(x)) = 0}. Then
µ(Y ) = 1. Suppose a homeomorphism f is not weak µ-expansive. Then there
exists x0 ∈ X \ Y such that µ(ΓP(x0)) > 0. Since µ(Y ) = 1 and µ(ΓP(x0)) >
0, Y ∩ ΓP(x0) 6= ∅. We can choose y0 ∈ Y ∩ ΓP(x0). Since y0 ∈ ΓP(x0),
f i(y0) ∈ P(f i(x0)) for all i ∈ Z. Let z ∈ ΓP(y0). Then f i(z) ∈ P(f i(y0)) for
all i ∈ Z. Therefore, f i(z) ∈ P(f i(x0)). This means ΓP(x0) = ΓP(y0) and so
µ(ΓP(x0)) = 0. The contradiction completes the proof. �

Theorem 2.2. If a homeomorphism f is measure expansive, then it is weak
measure expansive.

Proof. Since a homeomorphism f is µ-expansive, there exists δ > 0 such that
µ(Γδ(x)) = 0 for all x ∈ X. Let P be a finite partition of X. Let y ∈
ΓP(x), then f i(y) ∈ P(f i(x)) for all i ∈ Z. Since diamP(f i(x)) ≤ δ, we have
d(f i(x), f i(y)) ≤ δ for all i ∈ Z. Therefore y ∈ Γδ(x). That is, for any x ∈ X,
we get ΓP(x) ⊂ Γδ(x). Since µ(ΓP(x)) ≤ µ(Γδ(x)), we have µ(ΓP(x)) = 0.
Hence f is weak µ-expansive. �



1134 J. AHN AND S. KIM

The following example shows that the converse of Theorem 2.2 does not
hold. More precisely, we give a homeomorphism f on the unit circle to claim
that f is weak measure expansive but not measure expansive.

Example 2.3. Let f : S1 → S1 be an irrational rotation map. Then f is
weak measure expansive. But f is not m-expansive, where m ∈M∗(S1) is the
Lebesgue measure on S1.

Proof. First, we show that f is weak measure expansive. Regard S1 as [0, 2π)
for convenience. For any small 0 < δ < 1

2 , let P = {Ai ⊂ [0, 2π) : i =
1, . . . , n} be a finite partition of [0, 2π) such that each Ai is a half-open interval
with diamAi < δ. For any x ∈ S1, let x ∈ Aj for some j ∈ {1, 2, . . . , n}.
We claim that ΓP(x) = {x}. For this, take a point y ∈ Aj with x 6= y,
say x < y. Put d(x, y) = ε > 0. Since every rotation map is an isometry,
d(x, y) = d(f i(x), f i(y)) for all i ∈ Z. Take an end point z of Ak for some
k ∈ {1, 2, . . . , n}, and an open ball Bε/2(z) containing z. Since every orbit of

f is dense, there is l ∈ Z such that f l(x) ∈ Ak−1 ∩ Bε/2(z). Since f is an

orientation preserving map and an isometry, f l(y) must be an element of Ak.
This means ΓP(x) = {x}, that is µ(ΓP(x)) = 0 for all µ ∈ M∗(S1). So f is
weak measure expansive.

On the other hand, let m ∈M∗(S1) be the Lebesgue measure on S1. Since
f is an isometry, we can see that for every x ∈ X

Γδ(x) = {y ∈ S1 : d(f i(x), f i(y)) ≤ δ for i ∈ Z} = Bδ[x].

Hence we get m(Γδ(x)) = m(Bδ[x]) > 0. This means that f is not m-expansive.
�

Lemma 2.4. The identity map on a compact metric space X is not weak
measure expansive.

Proof. Let Id be the identity map. Let P = {A1, A2, . . . , An} be a finite
partition of X. Then ΓId

P (x) = P(x) = Ai for some i = 1, . . . , n. Choose
Ai ∈ P such that µ(Ai) > 0. That means µ(ΓId

P (x)) > 0 for all x ∈ Ai.
Therefore Id is not weak measure expansive. �

Lemma 2.5. A homeomorphism f is weak measure expansive if and only if
fn is weak measure expansive for n ∈ Z \ {0}.

Proof. First, we prove the necessary part. Let fn be weak measure expansive
for n ∈ Z \ {0}. This means that there exists a finite partition P of X such

that µ(Γf
n

P (x)) = 0 for all x ∈ X. And it is easy to check ΓfP(x) ⊂ Γf
n

P (x).

Indeed, if we take y ∈ ΓfP(x), that is, f i(y) ∈ P(f i(x)) for all i ∈ Z, then

(fn)i(y) ∈ P((fn)i(x)) for all i ∈ Z. Thus, we know that y ∈ Γf
n

P (x). There-

fore, µ(ΓfP(x)) ≤ µ(Γf
n

P (x)) = 0.
Conversely, suppose that a homeomorphism f is weak measure expansive

with a finite partition P of X, that is, µ(ΓfP(x)) = 0 for all x ∈ X and
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µ ∈ M∗(X). We consider Q =
∨n
i=0 f

−i(P), then Q is a finite partition of
X satisfying Q(x) =

⋂n
i=0 f

−i(P(f i(x))). Here,
∨n
i=0 f

−i(P) means the set
{
⋂n
i=0 ζi : ζi ∈ f−i(P) for all 0 ≤ i ≤ n} and it is called the join of the parti-

tion P. Now, take y ∈ Γf
n

Q (x), then clearly y ∈ Q(x). From this, we can know
that

f i(y) ∈ P(f i(x)) for every 0 ≤ i ≤ n.

Take k > n, so k = pn+ i for some p ∈ N and 0 ≤ i < n. Since y ∈ Γf
n

Q (x), we

have fpn(y) ∈ Q(fpn(x)) and then

fk(y) = fpn+i(y) = f i(fpn(y)) ∈ P(f i(fpn(x))) = P(fk(x))

for all k ∈ N, i.e., y ∈ ΓfP(x). Therefore we get Γf
n

Q (x) ⊂ ΓfP(x) and so

µ(Γf
n

Q (x)) = 0 for all x ∈ X and µ ∈ M∗(X). It follows that fn is weak
measure expansive with a finite partition Q of X. �

Theorem 2.6. A homeomorphism f : X → X is weak µ-expansive for some
µ ∈ M∗(X) if and only if there exists an f -invariant Borel set Y of f such
that f |Y is weak ν-expansive for some ν ∈M∗(Y ).

Proof. Since the sufficiency is clear, it is enough to prove that necessary part.
Suppose f |Y is weak ν-expansive. Then there exists a finite partition P =

{A1, A2, . . . , Ak} of Y such that ν(Γ
f |Y
P (x)) = 0 for all x ∈ Y . Let Q =

{A1, A2, . . . , Ak, B1, B2, . . . , Bl} be a finite partition of X. Since Y is invariant,
we have

either ΓfQ(x) ∩ Y = ∅ if x ∈ X \ Y or ΓfQ(x) = Γ
f |Y
P (x) if x ∈ Y .

Define µ(B) = ν(B ∩ Y ) for any Borel set B of X. Then µ ∈ M∗(X) and

µ(ΓfQ(x)) = 0 for all x ∈ X. Therefore, f is weak µ-expansive with a finite
partition Q of X. �

Topological conjugacy is important in the study of iterated functions and
more general dynamical systems. If the dynamics of one iterated function can
be solved, then those for any topological conjugate function follow trivially. The
next theorem implies that the property of having weak measure expansivity is
a conjugacy invariant. Given a measure µ ∈M∗(X) and a homeomorphism φ :
X → Y , we denote by φ∗(µ) the pullback measure of µ defined by φ∗(µ)(A) =
µ(φ−1(A)) for all borelian A.

Theorem 2.7. Let X and Y be compact metric spaces and a homeomorphism
f : X → X be weak µ-expansive for all µ ∈ M∗(X). If φ : X → Y is a
homeomorphism from X to Y , then g : Y → Y is weak φ∗(µ)-expansive, where
g = φ ◦ f ◦ φ−1.
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Proof. Since a homeomorphism f is weak µ-expansive, there exist δ > 0 and

a finite δ-partition P = {A1, A2, . . . , An} of X such that µ(ΓfP(x)) = 0 for all
x ∈ X and all µ ∈M∗(X). Let

δ′ = max{diamφ(Ai) : i = 1, . . . , n} and P′ = {φ(A1), φ(A2), . . . , φ(An)}.

Then P′ is clearly a finite δ′-partition of Y . We claim that

ΓgP′(y) ⊂ φ(ΓfP(φ−1(y))) for all y ∈ Y .

Indeed, if z ∈ ΓgP′(y), then gj(z) ∈ P′(gj(y)) for all j by the definition. This
means that gj(z) and gj(y) are contained in the same element, say φ(Ak), of
P′ for some k. Since gj = φ ◦ f j ◦ φ−1, we can rewrite the above statement as
follows: φ ◦ f j ◦ φ−1(z) and φ ◦ f j ◦ φ−1(y) are elements of φ(Ak) for some k.
This fact implies that

f j ◦ φ−1(z) ∈ Ak and f j ◦ φ−1(y) ∈ Ak
for some 1 ≤ k ≤ n. By the definition of the dynamic P-ball of f , we get

f j(φ−1(z)) ∈ P(f j(φ−1(y))). From this, we know φ−1(z) ∈ ΓfP(φ−1(y)). There-

fore we get z ∈ φ(ΓfP(φ−1(y))). Consequently we have

φ∗µ(ΓgP′(y)) = µ(φ−1(ΓgP′(y))) ≤ µ(ΓfP(φ−1(y))) = 0.

Hence φ∗(µ)(ΓgP′(y)) = 0 and g is weak φ∗(µ)-expansive. �

3. Hyperbolicity of weak measure expansive diffeomorphisms

Let M be a compact C∞-manifold and Diff(M) be the space of diffeomor-
phisms of M endowed with the C1-topology. Denote by d the distance on M
induced from the Riemannian metric ‖ · ‖ on the tangent bundle TM .

Given a diffeomorphism f : M → M define the non-wandering set Ω(f)
as the set of those x ∈ M satisfying: for all ε > 0 there is n ≥ 1 such that
Bε(x) ∩ fn(Bε(x)) 6= ∅ where Bε(x) denotes the open ε-ball centered at x.

Recall that f satisfies Smale’s Axiom A if Per(f) = Ω(f) and Ω(f) is hyperbolic.
A diffeomorphism f : M →M is Ω-stable if there is a C1-neighborhood U of f
such that for all g ∈ U there is a homeomorphism h : Ω(f) → Ω(g) such that
h◦f = g◦h. If f satisfies Axiom A, then Ω(f) decomposes into a finite disjoint
union basic sets Ω(f) = Λ1 ∪ · · · ∪Λl. A collection Λi1 , . . . ,Λik is called a cycle
if there exist points aj /∈ Ω(f) for j = 1, . . . , k such that ω(aj) ⊂ Λij+1 and
α(aj)⊂Λi (with k+1 ≡ 1). Here ω(x) is the set of cluster points of the forward
orbit {fn(x) : n ∈ N} of the iterated function f and is called the ω-limit set of
x. Also α(x) is called the α-limit set of x and is defined in a similar fashion,
but for the backward orbit. We say that f satisfies the no cycle condition (or
has not cycles) if there are not cycles among the basic sets of Ω(f).

We say that a diffeomorphism f is quasi-Anosov if for all v ∈ TM \ {0},
the set {‖Dfn(v)‖ : n ∈ Z} is unbounded. R. Mãné [6] proved that a dif-
feomorphism which is an element of the C1-interior of the set of all expansive
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diffeomorphisms satisfying both Axiom A and the no cycle condition. K. Sakai
et al. [10] proved that a diffeomorphism which is an element of the C1-interior
of the set of all invariant measure expansive diffeomorphisms is quasi-Anosov.
From the result, we know that the C1-interior of the set of all expansive dif-
feomorphisms is equal to the C1-interior of the set of all invariant measure
expansive diffeomorphisms.

Now we state our first main result as follows.

Theorem 3.1. Let WIE be the set of all f -invariant weak measure expansive
diffeomorphisms of M . Denote by int(WIE) is a C1-interior of WIE. A
diffeomorphism f ∈ int(WIE) if and only if f is Ω-stable.

To prove Theorem 3.1, we need some definitions and lemmas. Let f ∈
Diff(M), and let Λ be a closed f -invariant set. We say that Λ is hyperbolic if
the tangent bundle TΛM has a Df -invariant splitting Es ⊕Eu and there exist
constants C > 0 and 0 < λ < 1 such that

‖Dxf
n|Esx‖ ≤ Cλ

n and ‖Dxf
−n|Eux ‖ ≤ Cλ

n

for all x ∈ Λ and n > 0. We say that f ∈ Diff(M) is contained in F1(M) if
there exists a C1-neighborhood U(f) such that for all g ∈ U(f), every periodic
point of g is hyperbolic.

Lemma 3.2 ([4]). Let f ∈ Diff(M). The following properties are mutually
equivalent:

(i) f is Ω-stable,
(ii) f satisfies both Axiom A and the no cycle condition, and
(iii) f ∈ F1(M).

Lemma 3.3 ([3, Franks’ lemma]). Let U(f) be any given C1-neighborhood
of f . Then there exists δ > 0 such that for a finite set {x1, x2, . . . , xn}, a
neighborhood U of {x1, x2, . . . , xn} and linear maps Li : TxiM → Tf(xi)M
satisfying ‖Li −Dxif‖ < δ for 1 ≤ i ≤ n, there are ε0 > 0 and g ∈ U(f) such
that

(i) g(x) = f(x) if x ∈M \ U and
(ii) g(x) = expf(xi) ◦ Li ◦ exp−1

xi (x) if x ∈ Bε0(xi) for all 1 ≤ i ≤ n.

Observe that the assertion (ii) implies that

g(x) = f(x) if x ∈ {x1, x2, . . . , xn}
and that Dxig = Li for all 1 ≤ i ≤ n.

Proof of Theorem 3.1. First of all, we will show if a diffeomorpahism f is Ω-
stable, then f ∈ int(WIE). By [10], we know that if f satisfies both Axiom A
and the no cycle condition, then f is contained in the C1-interior of the set of
all f -invariant measure expansive diffeomorpahisms. So this direction of proof
is clear, because if a diffeomorpahism f is measure expansive, then f is weak
measure expansive.
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But in this paper, we give a proof of this directly. Let f satisfy both Axiom
A and the no cycle condition. Since the set of Ω-stable diffeomorphisms is open
in Diff(M), there is a C1-neighborhood U(f) of f such that every g ∈ U(f)
satisfies both Axiom A and the no cycle condition. By [11], g|Ω(g) is expansive,
and thus, g|Ω(g) is weak measure expansive, that is, there is a finite partition P
of M such that µ(ΓgP(x)) = 0 for all x ∈ Ω(g). Since µ(Ω(g)) = 1 because µ is
g-invariant probability measure, µ(ΓgP(x)) = 0 for a.e. x ∈M . Thus g is weak
µ expansive for all µ ∈M∗g(M) on M , that is, g ∈ WIE . Hence f ∈ int(WIE).

Second, we prove only if part. Note that f is weak measure expansive
implies that fn is weak measure expansive for all n ∈ Z \ {0} by Lemma 2.5.
To prove this direction, we claim that if f ∈ int(WIE), then f ∈ F1(M).
Let f ∈ int(WIE) and assume f /∈ F1(M). Since f ∈ int(WIE), there is a
C1-neighborhood U(f) of f such that for all g ∈ U(f) and µ ∈ M∗g(M), g is

weak µ-expansive. On the other hand, since f /∈ F1(M), there are g ∈ U(f)
and non-hyperbolic periodic point p of g. By Lemma 3.3, we can assume that
Dpg

π(p) has either only one real eigenvalue λ with |λ| = 1, or only one pair of
complex conjugated eigenvalues. Denote by Ecp the eigenspace corresponding
to λ.

At first, we consider the case dimEcp = 1. In this case, suppose that λ = 1
for simplicity. Then by Lemma 3.3, there are ε0 > 0 and h ∈ U(f) such that

(i) hπ(p)(p) = gπ(p) = p, and
(ii) h(x) = expgi+1(p) ◦Dgi(p)g ◦ exp−1

gi(p)(x),

if x ∈ Bε0(gi(p)) for all 0 ≤ i ≤ π(p) − 1. Since λ = 1, there is a small arc
Ip ⊂ Bε0(p) ∩ expp(E

c
p(ε0)) with its center at p such that

- hi(Ip) ∩ hj(Ip) = ∅ if i 6= j for 0 ≤ i, j ≤ π(p)− 1,

- hπ(p)(Ip) = Ip, and

- hπ(p)|Ip is the identity map.

Let MIp be the normalized Lebesgue measure on Ip. Define µ̃ ∈M∗h(M) by

µ̃(B) =
1

π(p)

π(p)−1∑
j=0

MIp
[
h−j

(
B ∩ hj(Ip)

)]
for all Borel set B of M (this is well-defined). Since hπ(p)|Ip is the identity

map, hπ(p)|Ip is not weak µ̃-expansive. Therefore h is not weak µ̃-expansive by
Theorem 2.6. This is contradicts the fact that h ∈ U(f).

Similarly, we can prove the other case and complete the proof. �

We say that a subset G ⊂ Diff(M) is residual if G contains the intersection
of a countable family of open and dense subsets of Diff(M). In this case G is
dense in Diff(M). A property “P” is said to be C1-generic if “P” holds for all
diffeomorphisms which belong to some residual subset of Diff(M). We use the
terminology for C1-generic f to express “there is residual subset of G ⊂ Diff(M)
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such that for any f ∈ G...”. For expansivity, Yang and Gan [13] proved that C1-
generically, if the homoclinic class which contains a hyperbolic periodic point
is expansive, then it is hyperbolic. Arbieto [1] showed that C1-generically, if
a diffeomorphism is expansive, then the diffeomorphism satisfies both Axiom
A and the no-cycle condition. Moreover, Pacifico and Vieitez [9] claimed that
diffeomorphisms in a residual subset far from homoclinic tangencies are measure
expansive. Recently Lee [5] proved that C1-generically, if a diffeomorphism
f does not present a homoclinic tangency, then it is weak Lebesgue measure
expansive. In this direction we prove the following theorem which is the second
main result of this paper.

Theorem 3.4. For C1-generic f ∈ Diff(M), if f is weak measure-expansive,
then f satisfies both Axiom A and the no cycle condition.

To prove the theorem, we need some definitions and lemmas. Denote by
P (f) the set of periodic points of f , and by Ph(f) the set of hyperbolic periodic
points of f . We say a hyperbolic periodic point p of f with period π(p) said to
have a δ-weak eigenvalue if there is an eigenvalue λ of Dfπ(p)(p) such that

(1− δ)π(p) < |λ| < (1 + δ)π(p).

We say that the periodic point p has simple real spectrum if all of its eigen-
values are real and have multiplicity one.

Definition. For η > 0 and f ∈ Diff(M), a C1-curve L is called η-periodic curve
of f containing p ∈ Ph(f) with period π(p) if L is diffeomorphic to [0, 1],L is
periodic with period π(p) and l(f i(L)) < η for any i = 0, . . . , π(p) − 1, where
l(L) denotes the length of L.

Lemma 3.5. There is a residual set G ⊂ Diff(M) such that for any f ∈ G,

(a) for any p ∈ Ph(f) and δ > 0, if for any sufficiently small C1-neighbor-
hood U(f) of f there exists g ∈ U(f) such that g has a δ-periodic curve
γg containing pg with period π(p), then f has a δ-periodic curve γ
containing p.

(b) if gn → f and pgn ∈ Ph(gn) has a δ-weak eigenvalue, then there exists
p ∈ Ph(f) with 2δ-weak eigenvalue such that pgn → p.

Proof. (a) Let K(M) be the space of nonempty closed subsets of M with the
Hausdorff metric dH . Take a countable basis β = {V1,V2, . . .} of K(M). For
each n ∈ N, we let Hn(δ) = {f ∈ Diff(M) : f has a δ-periodic curve γ such
that Of (γ) ∈ Vn}. Then we know that Hn(δ) is open in Diff(M) since ev-
ery orbit Of (γ) of periodic curve γ has a continuation; i.e., there are a C1-
neighborhood U(f) of f and a neighborhood U of Of (γ) such that for any
g ∈ U(f), ∩n∈Zgn(U) = Og(γg) is an g-orbit of periodic curve γg containing

pg. Let Nn(δ) = Diff(M)− Hn(δ). Then Nn(δ) ∪ Hn(δ) is an open and dense
subset of Diff(M). Let

G(δ) =
⋂
n∈N(Nn(δ) ∪Hn(δ)) and G =

⋂
δ∈Q+ G(δ).
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Then we can see that G is a desired residual subset of Diff(M).
In fact, for any f ∈ G and p ∈ Ph(f), take Vn ∈ β containing Of (p) in

K(M) such that Of (p) is unique compact f -invariant set belongs to Vn. Choose
δ ∈ Q+ satisfying

BdH (Of (p), 2δ) ⊂ Vn,

where BdH (Of (p), 2δ) is an open ball of Of (p) with radius 2/δ. Let U(f) be a
C1-neighborhood of f such that for any h ∈ U(f),

dH(Of (p), Oh(ph)) < δ and Oh(ph) ∈ Vn,

where ph is the continuation of p under h. For the U(f), by assumption there
exists g ∈ U(f) such that g has a δ-periodic curve γg containing pg. Since
dH(Og(pg), Og(γg)) < δ, we have

dH(Of (p), Og(γg)) ≤ dH(Of (p), Og(pg)) + dH(Og(pg), Og(γg))

< δ + δ = 2δ.

Hence we have Og(γg) ∈ Vn and g ∈ Hn(δ). This means that f ∈ Hn(δ) and
so f /∈ Nn(δ). Thus f ∈ Hn(δ), i.e., f has a δ-periodic curve γ such that
Of (γ) ∈ Vn.

(b) It is straightforward by [1]. �

Lemma 3.6. There is a residual set G ⊂ Diff(M) such that for any f ∈ G, if
f is weak measure expansive, then there exists δ > 0 such that every p ∈ Ph(f)
has no δ-weak eigenvalue.

Proof. Let G be a residual subset of Diff(M) which is obtain in Lemma 3.5.
Suppose there exists a weak measure expansive diffeomorphism f ∈ G such that
for any δ > 0, there exists p ∈ Ph(f) such that Dpf

π(p) has a δ-weak eigenvalue
λ. Since f is weak measure expansive, for any µ ∈ M∗(M) there exist e > 0

and finite e-partition P = {A1, A2, . . . , An} of M such that µ(ΓfP(x)) = 0 for
all x ∈ M . By Lemma 3.3, there exist g ∈ U(f) and pg ∈ Ph(g) such that

Dpgg
π(pg) has a simple real spectrum and an eigenvalue λg with |λg| = 1. By

Lemma 3.3, there exist ε0 > 0 and h ∈ U(g) ⊂ U(f) such that

(i) hπ(pg)(pg) = gπ(pg)(pg) = pg, and

(ii) h(x) = expgi+1(pg) ◦Dgi(pg)g ◦ exp−1
gi(pg)(x),

if x ∈ Bε0(gi(pg)), 0 ≤ i ≤ π(pg) − 1. Put K = {c · vg | − 1 ≤ c ≤ 1},
where vg is an eigenvector corresponding to λg. Then there exists I, subarc of
exppg (K) ∩Bε0(pg), such that

- hi(I) ∩ hj(I) = ∅, if 0 ≤ i 6= j ≤ π(pg)− 1, and

- hπ(p)(I) = I,

i.e., I is a c-periodic curve of h. Then by Lemma 3.5(a), there exists c-periodic
curve If for f such that fπ(p)|If is invariant. Put Jf = If ∩Ai( 6= ∅) for some
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Ai ∈ P. Then for all x ∈ Jf , we get Jf ⊂ Γf
π(p)

P (x). Define a new measure µ̂
on M by

µ̂(B) = M(B ∩ Jf ),

where B is a Borel set and M is a normalized Lebesgue measure on Jf .

Since µ̂(Γf
π(p)

P (x)) ≥ µ̂(Jf ) > 0, we arrive at the contradiction to the fact

that fπ(p) is weak measure expansive. The contradiction completes the proof.
�

End of proof of Theorem 3.4. Let f ∈ G be weak measure expansive. To derive
a contradiction, we assume that f /∈ F1(M). For each n ∈ N, let Un(f) =
{g ∈ Diff(M) : d1(f, g) < 1

n} be the C1-neighborhood f . Then there exist
gn ∈ Un(f) and a periodic point pgn of gn such that pgn has an eigenvalue λgn
with |λgn | = 1. By Lemma 3.3, for any C1-neighborhood U(gn) of gn, we can

take g̃n ∈ U(gn) and pg̃n ∈ Ph(g̃n) such that pg̃n has a δ
2 -weak eigenvalue. By

Lemma 3.5(b), since g̃n → f , there exists p ∈ Ph(f) such that p has a δ-weak
eigenvalue. This is a contradiction to Lemma 3.6. And so f ∈ F1(M). This
means that f satisfies both Axiom A and the no cycle condition. �
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