DOI QR코드

DOI QR Code

Behavior Characteristics of Density Currents Due to Salinity Differences in a 2-D Water Tank

  • Lee, Woo-Dong (Department of Ocean Civil Engineering, Institute of Marine Industry, Gyeongsang National University) ;
  • Mizutani, Norimi (Department of Civil Engineering, Nagoya University) ;
  • Hur, Dong-Soo (Department of Ocean Civil Engineering, Institute of Marine Industry, Gyeongsang National University)
  • Received : 2018.07.17
  • Accepted : 2018.08.13
  • Published : 2018.08.31

Abstract

In this study, a hydraulic model test, to which Particle Image Velocimetry (PIV) system applied, was used to determine the hydrodynamic characteristics of the advection-diffusion of saltwater according to bottom conditions (impermeable/permeability, diameter, and inclination) and the difference of the initial salt. Considering quantitative and qualitative results from the experiment, the characteristics of the density current were discussed. As an experimental result, the advection-diffusion mechanism of salinity was examined by the shape of saltwater wedge and the flow structure of density currents with various bottom conditions. The vertical salt concentration obtained from the experiment was used as quantitative data to calculate the diffusion coefficient that was used in the numerical model of the advection-diffusion of saltwater.

Keywords

References

  1. Benjamin, T.B., 1968. Gravity Currents and Related Phenomena. Journal of Fluid Mechanics, 31(2), 209-248. https://doi.org/10.1017/S0022112068000133
  2. Blumberg, A.F., 1977. Numerical Model of Estuarine Circulation. Journal of Hydraulics Division, 103, 295-310.
  3. Cantero, M., Balachandar, S., Garcia, M., Ferry, J., 2006. Direct Numerical Simulations of Planar and Cylindrical Density Currents. Journal of Applied Mechanics, 73(6), 923-930. https://doi.org/10.1115/1.2173671
  4. De Cesare, D., Boillat, J.-L., Schleiss, A.J., 2006. Circulation in Stratified Lakes due to Flood-Induced Turbidity Currents. Journal of Environmental Engineering, 132(11), 1508-1517. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:11(1508)
  5. Farhanieh, B., Firoozabadi, B., Rad, M., 2001. The Propagation of Turbulent Density Currents on Sloping Beds. Scientia Iranica, 8(2), 130-137.
  6. Firoozabadi, B., Afshin, H., Aram, E., 2009. Three-Dimensional Modeling of Density Current in a Straight Channel. Journal of Hydraulic Engineering, 135(5), 393-402. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000026
  7. Georgoulas, A.N., Angelidis, P.B., Panagiotidis, T.G., Kotsovinos, N.E., 2010. 3D Numerical Modelling of Turbidity Currents. Environmental Fluid Mechanics, 10(6), 603-635. https://doi.org/10.1007/s10652-010-9182-z
  8. Gill, A.E., 1982. Atmosphere-Ocean Dynamics. New York, Academic Press.
  9. Gray, T.E, Alexander, J., Leeder, M.R., 2006. Longitudinal Flow Evolution and Turbulence Structure of Dynamically Similar, Sustained, Saline Density and Turbidity Currents. Journal of Geophysical Research: Oceans Banner, 111.
  10. Hormozi, S., Firoozabadi, B., Ghasvari, H., 2008. Characteristic Variables and Entrainment in 3-D Density Currents. Scientia Iranica, 15(5), 575-583.
  11. Huppert, H.E., Simpson, J.E., 1980. The Slumping of Gravity Currents. Journal of Fluid Mechanics, 99(4), 785-799. https://doi.org/10.1017/S0022112080000894
  12. Lal, P.B.B., Rajaratham, N., 1977. Experimental Study of Bluff Buoyant Turbulent Surface Jets. Journal of Hydraulic Research, 15(3), 261-275. https://doi.org/10.1080/00221687709499647
  13. Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M., Stelling, G.S., 2004. Development and Validation of a Three-Dimensional Morphological Model. Coastal Engineering, 51(8-9), 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
  14. Marmoush, Y.R., Smith, A.A., Hamblin, P.F., 1984. Pilot Experiments on Thermal Bar in Lock Exchange Flow. Journal of Energy Engineering, 110(3), 215-227. https://doi.org/10.1061/(ASCE)0733-9402(1984)110:3(215)
  15. Mueller, C., Carbone, R., 1987. Dynamics of a Thunderstorm Outflow. Journal of the Atmospheric sciences, 44(15), 1879-1898. https://doi.org/10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2
  16. Natale, M.D., Vicinanza, D., 2001. An Experimental Study of Heated Surface Jet in a Wave Environment. The International Society of Offshore Polar Engineers, 11, 396-403.
  17. Pacanowski, R.C., Philander, S.G.H., 1981. Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans. Journal of Physical Oceanography, 11, 1443-1451. https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
  18. Paik, J., Eghbalzadeh, A., Sotiropoulos, F., 2009. Three-Dimensional Unsteady RANS Modeling of Discontinuous Gravity Currents in Rectangular Domains. Journal of Hydraulic Engineering, 135(6), 505-521. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000034
  19. Patterson, M.D., Simpson, J.E., Dalziel, S.B., Nikiforakis, N., 2005. Numerical Modelling of Two-Dimensional and Axisymmetric Gravity Currents. International Journal for Numerical Methods in Fluids, 47, 1221-1227. https://doi.org/10.1002/fld.841
  20. Raffel, M., Willert, C.E., Kompenhans, J., 1998. Particle Image Velocimetry: a Practical Guide. Springer Verlag, Berlin, 253.
  21. Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J., 2007. Particle Image Velocimetry. Springer Verlag, Berlin, 448.
  22. Sato, T., Tonoki, K., Yoshikawa, T., Tsuchiya, Y., 2006. Numerical and Hydraulic Simulations of the Effect of Density Current Generator in a Semi-Enclosed Tidal Bay. Coastal Engineering, 53(1), 49-64. https://doi.org/10.1016/j.coastaleng.2005.08.001
  23. Shanack, S., 1960. A Theoretical Current Density Ansatz for the Quiet Day Solar Semi-Diurnal Tidal Mode of Oscillation of the Ionosphere. Journal of Atmospheric and Terrestrial Physics, 17(4), 337-343. https://doi.org/10.1016/0021-9169(60)90148-3
  24. Simpson, J.E., 1969. A Comparison between Laboratory and Atmospheric Density Currents. Quarterly Journal of The Royal Meteorological Society, 95(406), 758-765. https://doi.org/10.1002/qj.49709540609
  25. Thomas, L.P., Marino, B.M., Linden, P.F., 1998. Gravity Currents over Porous Substrates. Journal of Fluid Mechanics, 366, 239-258. https://doi.org/10.1017/S0022112098001438
  26. Thomas, L.P., Marino, M.B., Linden, P.F., 2004. Lock-Release Inertial Gravity Currents over a Thick Porous Layer. Journal of Fluid Mechanics, 503, 299-319. https://doi.org/10.1017/S0022112004007918
  27. Wakimoto, R.M., 1982. The Life Cycle of Thunderstorm Gust Fronts as Viewed with Doppler Radar and Rawinsonde Data. Monthly Weather Review, 110, 1060-1082. https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
  28. White, B.L., Helfrich, K.R., 2008. Gravity Currents and Internal Waves in a Stratified Fluid. Journal of Fluid Mechanics, 616, 327-356. https://doi.org/10.1017/S0022112008003984