DOI QR코드

DOI QR Code

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section

NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석

  • Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • Kim, Je-in (Marine Hydrodynamic Performance Research Center, Dong-Eui University) ;
  • Seol, Han-Sin (Korea Ocean Research & Development Institute, Korea research Institute of Ship & Ocean Engineering) ;
  • Kim, Ki-Sup (Korea Ocean Research & Development Institute, Korea research Institute of Ship & Ocean Engineering) ;
  • Ahn, Jong-Woo (Korea Ocean Research & Development Institute, Korea research Institute of Ship & Ocean Engineering)
  • 박일룡 (동의대학교 조선해양공학과) ;
  • 김제인 (동의대학교 조선해양유체성능평가연구소) ;
  • 설한신 (선박해양플랜트 연구소) ;
  • 김기섭 (선박해양플랜트 연구소) ;
  • 안종우 (선박해양플랜트 연구소)
  • Received : 2018.08.01
  • Accepted : 2018.08.20
  • Published : 2018.08.31

Abstract

This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

Keywords

References

  1. Ahn, J.W., Park, Y.H., Moon, I.S., Kim, K.S., 2001. Cavitation and Noise Characteristics of High-Speed Propellers with Geometric Variations. Journal of the Society of Naval Architects of Korea, 38(3), 23-30.
  2. Arndt, R.E.A., Arakeri, V.H., Higuchi, H., 1991. Some Observations of Tip-vortex Cavitation. Journal of Fluid Mechanics, 229, 269-289. https://doi.org/10.1017/S0022112091003026
  3. Choi, J.E., Chung, S.H., Lee, D.H., 2007. Cavitating Flow Characteristics around a 2-Dimensional Hydrofoil Section. Jounal of the Society of Naval Architects of Korea, 44(2), 74-82. https://doi.org/10.3744/SNAK.2007.44.2.074
  4. Dacles-Mariani, J., Kwak, D., Zilliac, G., 1999. On Numerical Errors and Turbulence Modeling in Tip Vortex Flow Prediction. International Journal for Numerical Methods in Fluids, 30(1), 65-82. https://doi.org/10.1002/(SICI)1097-0363(19990515)30:1<65::AID-FLD839>3.0.CO;2-Y
  5. Devenport, W.J., Rife, M.C., Liapis, S.I., Follin, G.J., 1996. The Structure and Development of a Wing-tip Vortex. Journal of Fluid Mechanics, 312, 67-106. https://doi.org/10.1017/S0022112096001929
  6. Egolf, T., Wake, B., Berezin, C., 2000. Recent Rotor Wake Simulation and Modeling Studies at United Technologies Corporation. In 38th Aerospace Sciences Meeting and Exhibit, AIAA-2000-0115.
  7. Kang, T.J., Park, W.G., Jung, C.M., 2014. Cavitation Flow Analysis of Hydrofoil with Change of Angle of Attack. Jounal of Computational Fluids Engineering. 19(2), 17-23. https://doi.org/10.6112/kscfe.2014.19.2.017
  8. Kim, J.I., Park, I.R., Kim, K.S., Ahn, J.W., 2017. Numerical Analysis of Non-Cavitating and Cavitating Performance of a SVA Potsdam Propeller. Journal of the Society of Naval Architects of Korea, 54(3), 215-226. https://doi.org/10.3744/SNAK.2017.54.3.215
  9. Krasny, R., 1987, Computation of Vortex Sheet Roll-up in the Trefftz Plane. Journal of Fluid Mechanics, 184, 123-155. https://doi.org/10.1017/S0022112087002830
  10. Lee, C.H., Han, J.M., Kim, J.H., Ahn, B.K., 2010a. Propeller Tip Vortex Cavitation Control Using Water Injection. Journal of the Society of Naval Architects of Korea, 47(6), 770-775. https://doi.org/10.3744/SNAK.2010.47.6.770
  11. Lee, P.H., Ahn, B.K., Lee, J.H., Lee, C.S., 2010b. Experimental Study on Underwater Radiated Noise Characteristics of the Type of Propeller Cavitations. Proceedings of the SNAK Conference, 1003-1013.
  12. Lee, S.J., Seo, J., Han, J., 2007. Experimental Study on the Cavitation Noise of a Hydrofoil. Journal of the Society of Naval Architects of Korea, 44(2), 111-118. https://doi.org/10.3744/SNAK.2007.44.2.111
  13. Park, K.K., 2004. Numerical Analysis of Tip Vortex Cavitation Behavior and Noise(Ph.D. Thesis). University of Seoul, Korea.
  14. Park, K.K., Seol, H.S., Lee, S.G., 2006. Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory. Jounal of the Society of Naval Architects of Korea. 43(2), 177-185. https://doi.org/10.3744/SNAK.2006.43.2.177
  15. Peng, X.X., Xu, L.H., Liu, Y.W., Zhang, G.P., Cao, Y.T., Hong, F.W., Yan, K., 2017. Experimental Measurement of Tip Vortex Flow Field with/without Cavitation in an Elliptic Hydrofoil. Journal of Hydrodynamics. 29(6), 939-953. https://doi.org/10.1016/S1001-6058(16)60808-9
  16. Ragab, S., Sreedhar, M., 1995. Numerical Simulations of Vortices with Axial Velocity Deficits. Physics of Fluids, 7(3), 549-558. https://doi.org/10.1063/1.868582
  17. Sauer, J., 2000. Instationär Kavitierende Strömungen-Ein Neues Modell, Basierend auf Front Capturing (VoF) und Blasendynamik (Ph.D. Thesis). Universitat Karlsruhe, Germany.
  18. Seol, H.S., Lee, S.G., Pyo, S.W., Suh, J.C., 2004. Numerical Analysis of Underwater Propeller Noise. Journal of the Society of Naval Architects of Korea, 41(2), 33-46. https://doi.org/10.3744/SNAK.2004.41.2.033
  19. Siemens, 2016. STAR-CCM+ User Guide. Version 11.06.
  20. Zeman, O., 1995. The Persistence of Trailing Vortices: A Modeling Study. Physics of Fluids, 7, 135-143. https://doi.org/10.1063/1.868734
  21. Wells, J., 2009. Effects of Turbulence Modeling on RANS Simulations of Tip Vortices(Master's thesis). Virginia Polytechnic Institute and State University.